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ABSTRACT: To close the overturning circulation, dense bottom water must upwell via turbulent mixing. Recent studies
have identified thin bottom boundary layers (BLs) as locations of intense upwelling, yet it remains unclear how they inter-
act with and shape the large-scale circulation of the abyssal ocean. The current understanding of this BL–interior coupling
is shaped by 1D theory, suggesting that variations in locally produced BL transport generate exchange with the interior
and thus a global circulation. Until now, however, this picture has been based on a 1D theory that fails to capture the local
evolution in even highly idealized 2D geometries. The present work applies BL theory to revised 1D dynamics, which
more naturally generalizes to two and three dimensions. The BL is assumed to be in quasi-equilibrium between the upwell-
ing of dense water and the convergence of downward buoyancy fluxes. The BL transport, for which explicit formulas are
presented, exerts an influence on the interior by modifying the bottom boundary condition. In 1D, this BL transport is in-
dependent of the interior evolution, but in 2D the BL and interior are fully coupled. Once interior variables and the bot-
tom slope are allowed to vary in the horizontal, the resulting convergences and divergences in the BL transport exchange
mass with the interior. This framework allows for the analysis of previously inaccessible problems such as the BL–interior
coupling in the presence of an exponential interior stratification, laying the foundation for developing a full theory for the
abyssal circulation.
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1. Introduction

Thin boundary layers (BLs) at the ocean’s bottom have re-
cently come into focus as the primary locations in which small-
scale turbulence lightens bottom waters, thus playing a crucial
role in closing the overturning circulation of the abyss (Ferrari
et al. 2016; de Lavergne et al. 2016). The connection between
these BLs and the large-scale abyssal circulation, however, re-
mains to be fully explained. The cornerstone of our present un-
derstanding of the mixing-generated abyssal circulation is a 1D
model of a stratified, rotating fluid overlying a sloping, insulated
seafloor (e.g., Phillips 1970; Wunsch 1970; Thorpe 1987; Garrett
et al. 1993). This 1D theory helped bring bottom BLs into center
stage, predicting that the local response to bottom-intensified
mixing is characterized by diabatic upslope flow in the thin BL
compensated in part by diabatic downslope flow spread across
the interior (Garrett 1990; Ferrari et al. 2016; de Lavergne et al.
2016; McDougall and Ferrari 2017; Callies 2018). Our descrip-
tion of large-scale abyssal dynamics is shaped by this local the-
ory: the natural conclusion is that variations in these locally
produced flows generate exchange with the interior and produc-
ing a global circulation (e.g., Phillips et al. 1986; McDougall
1989; Garrett 1991; Dell and Pratt 2015; Holmes et al. 2018).
This picture fails to consider the potential feedback of the circu-
lation produced in the interior back onto the BL, however, sug-
gesting that this framework is incomplete.

In addition to this lack of two-way coupling, progress has
also been hampered by the canonical 1D theory failing to

reproduce the local evolution in simple 2D geometries. The
canonical 1D model predicts slow diffusion of the interior along-
slope flow (MacCready and Rhines 1991), whereas simulations
of bottom-intensified mixing over an idealized 2D midocean
ridge display rapid spinup of the interior (Ruan and Callies
2020). In Peterson and Callies (2022, hereafter PC22), we rem-
edied this shortcoming by including the physics of a secondary
circulation and barotropic pressure gradient. The key is to con-
strain the vertically integrated cross-slope transport to force up-
welling flow in the BL to return in the interior. This downwelling
flow is then turned in the along-slope direction by the Coriolis ac-
celeration and balanced by a barotropic pressure gradient, lead-
ing to rapid adjustment in the interior as seen in 2D. With this
more faithful 1D model, we have a reliable foundation to de-
scribe the role of abyssal BLs in the large-scale circulation.

Callies and Ferrari (2018) and Drake et al. (2020) con-
nected BL dynamics to the horizontal circulation in a 3D
planetary geostrophic (PG) model with idealized bathymetry
and Rayleigh friction. Callies and Ferrari (2018) found that,
for vertically constant interior stratification and on moderate
slopes, local 1D theory accurately emulates the 3D model’s
dynamics. On the sloping sidewalls of the idealized bathyme-
try, upslope transport in thin bottom BLs is compensated by
downwelling aloft. At the base of the slopes, however, 1D the-
ory breaks down in favor of a basin-scale circulation that
feeds the BLs on slopes. An integral of the local upslope 1D
BL transport along the perimeter of the basin provides an ac-
curate estimate of the overturning. These ideas fail, however,
once the interior stratification is far from constant, because
1D theory can only consider perturbations to a constant back-
ground stratification (Drake et al. 2020). This is a severe limi-
tation, given the real ocean’s near-exponential stratification
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(e.g., Munk 1966). For a more realistic stratification, downw-
elling in the interior is weakened and BL upwelling domi-
nates, although the vertical extent and structure of the net
transport remain to be explained. In this work, we provide a
framework for concretely understanding this interplay be-
tween the BL and interior.

Below, we derive self-contained equations for interior 1D
and 2D PG dynamics on an f plane with effective boundary
conditions that capture the effects of BLs. We accomplish this
using BL theory, splitting variables into their interior and
BL contributions (e.g., Bender and Orszag 1999; Chang 2007;
Fig. 1). This explicitly separates the interior and BL dynamics
and allows for deep physical insight into their coupling. Fa-
mously, Stommel’s (1948) gyre theory can be solved with BL
methods (Veronis 1966), although the coupling there is one-
way: the interior solution can be calculated in isolation, and
the western BL is a passive element of the theory. We find
that this is different for bottom BLs on slopes. Their structure
is shaped by the interior solution, but the buoyancy and mass
fluxes carried in the BL feed back on the interior solution in
the form of boundary conditions.

A central result of this paper is an explicit expression for
the cross-slope BL transport (per unit along-slope distance) in
terms of interior variables and flow parameters. In 1D, the BL
transport takes the form k cotum./(11m.), where m 5 n/k is
the turbulent Prandtl number with n being the turbulent vis-
cosity and k the turbulent diffusivity, and . 5N2 tan2u/f 2 is
the slope Burger number with N being the background inte-
rior buoyancy frequency, f the inertial frequency, and u the
bottom slope angle. All variables are evaluated at the bottom
(or, more generally, just above the BL). In the canonical 1D
framework, a steady-state balance between cross-slope up-
welling of dense water and turbulent mixing requires that the
total transport tends toward k‘ cotu, where k‘ is the far-field
turbulent diffusivity (Thorpe 1987; Garrett et al. 1993). Our
revised result instead applies to the bottom BL transport and
is valid throughout transient evolution, provided that the BL
has adjusted to a quasi-steady state. Unlike the canonical result,
this expression smoothly approaches zero as u" 0, more harmo-
niously connecting the model over a slope with conventional
flat-bottom Ekman theory (e.g., Pedlosky 1979). The expression
has the same form in 2D, but there the slope Burger number is a
function of interior cross-isobath buoyancy gradients as well as
the local topographic slope. Thus, in 2D, variations in interior
buoyancy gradients and the topographic slope cause conver-
gence in the BL transport, generating exchange with the interior.
A similar process occurs in 3D with the added physics of along-
isobath variations and a modified interior balance, but we leave
the details of 3D dynamics to future work.

In section 2, we begin by reviewing the transport-constrained
1D model from PC22, followed by a derivation of the 1D BL
theory. We derive the 2D BL theory in section 3, applying the
framework to simulations of mixing-generated spinup under a
vertically varying background stratification. In section 4, we re-
derive the 1D and 2D BL equations in a more rigorous fashion,
quantifying the accuracy of our claims in the previous sections
and uncovering some subtleties in the dynamics. Finally, we pro-
vide discussion and conclusions in sections 5 and 6, respectively.

2. One-dimensional boundary layer theory

In this section, we apply BL theory to the revised 1D model
from PC22 and present results from numerical integrations of
both the full and BL equations. Here and throughout the pa-
per, we employ PG scaling, thus focusing our attention on the
slow and large-scale response to mixing. The PG flow should
be interpreted as the residual flow after a thickness-weighted
average over transients due to turbulence, waves, and baro-
clinic eddies, with the effect of these transients included as
parameterized Eliassen–Palm and diapycnal fluxes (Young 2012).

a. Transport-constrained one-dimensional dynamics

We first consider 1D PG dynamics along a uniform slope at
an angle u above the horizontal. The 1D model is typically
derived by writing the Boussinesq equations in a rotated coor-
dinate system aligned with the slope (e.g., Garrett et al. 1993).
We slightly deviate from this approach by keeping the vertical
coordinate aligned with gravity, which is a more natural
choice if the horizontal components of the turbulent momen-
tum and buoyancy fluxes are neglected, but it yields equiva-
lent dynamics (PC22).1 Specifically, we write the 1D model in
(j, h, z) coordinates defined by

j 5 x, h 5 y, z 5 z 2 x tanu, (1)

where (x, y, z) defines the usual Cartesian coordinate system with z
aligned with gravity. These coordinates are analogous to terrain-
following coordinates (used below) in 1Dwith z 5 0 at the bottom.
Neglecting all variations in j and h, except for the barotropic

FIG. 1. Illustration of the BL correction to interior solution. Shown
is a typical streamfunction x, defined such that ­zx 5 ux, where ux is
the cross-slope flow, after three years of mixing-generated abyssal
spinup at a slope Burger number .5 1023 (see section 2). The solu-
tion is depicted (a) over the entire 2 km domain as well as (b) in a
zoom-in to the bottom 100m, shown in (a) in gray shading. The interior
solution xI varies slowly compared with the scale of the BL, and the
BL correction xB ensures that boundary conditions are satisfied.

1 In the limit u ,, 1, the gravity-aligned coordinate system em-
ployed here and the previously used fully rotated coordinate sys-
tem yield the same equations.
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pressure gradient ­xP (equivalently, ­jP, since P is independent of
z), and constraining the vertically integrated cross-slope transport
toUj (typically to zero), the PG equations become

2 fuh 5 2
­P
­x

1 b′ tanu 1
­

­z
n
­uj

­z

( )
, (2)

fuj 5
­

­z
n
­uh

­z

( )
, (3)

­b′

­t
1 ujN2 tanu 5

­

­z
k N2 1

­b′

­z

( )[ ]
, (4)

�‘

0
uj dz 5 Uj: (5)

Here, uj is the cross-slope velocity2 and uh is the along-slope
velocity. We have split the total buoyancy b into a constant back-
ground stratification and a perturbation so that b 5 N2z 1 b′.
The fluid satisfies no-slip and insulating boundary conditions at
the bottom: uj 5 0, uh 5 0, and ­zb 5 N2 1 ­zb′ 5 0 at z 5 0.
In the far field, we impose decay conditions on the shear and
anomalous buoyancy flux: ­zu

j " 0, ­zu
h " 0, and ­zb′ " 0 as

z " ‘. The extra degree of freedom supplied by ­xP allows the
transport constraint (5) to be satisfied at all times. Physically, this
constraint forces cross-slope upwelling in the BL to return in the
interior, where it is then turned into the along-slope direction by
the Coriolis force. In the PG framework, this process is instanta-
neous, and the far-field along-slope flow satisfies the balance:
2fuh 5 2­xP. This leads to rapid spinup of the along-slope flow
throughout the water column, as seen in simulations of 2D
spinup (Ruan and Callies 2020; PC22).

We employ a simple downgradient closure for the turbulent
momentum and buoyancy fluxes generated by, for example,
breaking internal waves but allow for variations in the mixing
coefficients n and k. We assume these variations to occur on a
scale larger than the BL thickness. In our examples below, n
and k are bottom enhanced in abyssal mixing layers a few
hundred meters thick, inspired by typical observations over
rough midocean ridges. Our main results, however, generalize
to the case in which n and k vary rapidly within the BL, for ex-
ample going to zero in a log-layer.

As in PC22, we cast Eqs. (2)–(5) into an inversion equation
for the flow, written in terms of a streamfunction x(z) defined
such that uj 5 ­zx, and an evolution equation for the buoy-
ancy perturbation:

­2

­z2
n
­2x

­z2

( )
1

f 2

n
(x 2 Uj) 5 2

­b′

­z
tanu, (6)

­b′

­t
1

­x

­z
N2 tanu 5

­

­z
k N2 1

­b′

­z

( )[ ]
: (7)

The boundary conditions are that x 5 0 and ­zx 5 0 at z 5 0
and x " Uj as z " ‘. If desired, one may infer the along-
slope flow from x by integrating

­uh

­z
5

f
n
(x 2 Uj) (8)

from the bottom up, using uh 5 0 at z 5 0. Equations (6) and
(7) fully describe the 1D PG system and can readily be solved
numerically. But insight into the BL–interior coupling is more
easily gained using BL theory.

b. Boundary layer theory

Under steady conditions, Eqs. (6) and (7) can be combined
to form a single fourth-order ordinary differential equation
for x. The fourth- and zeroth-order terms in that equation bal-
ance if x varies on a scale q21 defined by

(dq)4 5 1 1 m., (9)

where d 5
						
2n/f

√
is the familiar flat-bottom Ekman layer

thickness, and the mixing coefficients are evaluated at z 5 0.
This defines the BL scale of a rotating fluid adjacent to a slop-
ing bottom (e.g., Garrett et al. 1993). For typical abyssal pa-
rameters, q21 ; 10 m (Callies 2018). This thinness of the BL
compared to the scale of variations in the interior ocean is
what allows us to apply BL theory.

We begin by splitting solutions into interior contributions
xI and b′I , which vary slowly in z, and BL corrections xB and
b′B, which ensure boundary conditions are satisfied and have
appreciable magnitude in the thin BL only. A similar ap-
proach was taken in Callies (2018) with the canonical 1D
model, but the analysis presented here is time-dependent and
extensible to higher dimensions (section 3). If the mixing co-
efficients n and k vary on a scale much larger than q21, the
fourth-order term in (6) can be neglected in the interior:

f 2

n
xI 5 2

­b′I
­z

tanu, (10)

assuming Uj 5 0 (see appendix A for the Uj Þ 0 case).
Substituted back into the buoyancy equation (7), this reduces
the interior dynamics to a modified diffusion equation:

­b′I
­t

5
­

­z
k N2 1 (1 1 m.) ­b

′
I

­z

[ ]{ }
: (11)

This is a result familiar from Gill (1981), Garrett and Loder
(1981), and Garrett (1982): advection of the background strat-
ification by the secondary circulation becomes a horizontal
diffusion term, with diffusivity nN2/f 2. The form here is the
result of the sloping boundary: the vertical coordinate depends
on the slope-parallel distance multiplied by tanu, which explains
the factor tan2u in the additional diffusion term.

This interior evolution must be complemented by a represen-
tation of the bottom BL that supplies an effective boundary con-
dition for the interior equation. The key assumption here is that
the BL scale q21 is thin compared to interior variations. This
thinness of the BL also implies that it is quasi-steady on the time

2 Due to our non-orthogonal coordinate system, uj is technically
the x projection of the cross-slope velocity as it would be defined
in a fully rotated coordinate system (PC22; appendix A). For sim-
plicity, we refer to it as the “cross-slope velocity” throughout.
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scales of the interior evolution. The BL correction thus satisfies
the steady buoyancy equation

­xB
­z

N2 tanu 5
­

­z
k
­b′B
­z

( )
: (12)

Since all BL variables decay into the interior (i.e., as z " ‘)
this balance can be integrated to

xBN
2 tanu 5 k

­b′B
­z

: (13)

This relation is all that is needed to derive a boundary condition
on the interior solution. At z 5 0, xI 1 xB 5 0, such that the full
x 5 0 boundary condition is satisfied. So, using (10),

­b′B
­z

5 2
N2 tanu

k
xI 5 m.

­b′I
­z

at z 5 0: (14)

The insulating boundary condition then becomes

0 5 N2 1
­b′I
­z

1
­b′B
­z

5 N2 1 (1 1 m.) ­b
′
I

­z
at z 5 0:

(15)

The BL correction thus contributes an additional term m.­zb
′
I to

the boundary condition for the interior buoyancy evolution
(11). The added term represents physics akin to an Ekman
buoyancy flux (e.g., Marshall and Nurser 1992; Thomas and
Lee 2005): the BL transport xI acts on the cross-slope buoy-
ancy gradient N2 tanu and produces a buoyancy sink for
the interior. This boundary condition on the interior problem
implies a stratification at the top of the BL that is reduced
from the background by a factor m./(11m.) and a BL trans-
port, from combining (15) and (10),

xI 5 k cotu
m.

1 1 m.
at z 5 0, (16)

as claimed in the introduction (Fig. 2a). We note that the transport-
constrained system, unlike the canonical one, has no steady state
in a semi-infinite domain, yet previous work on the BL–interior
interaction has often begun with the canonical result that the
steady transport is Uj 5 k‘ cotu (e.g., Woods 1991; Callies and
Ferrari 2018; Drake et al. 2020). The revised expression in (16)
instead applies to the transport confined to the BL and more
sensibly leaves the net transport (and steady-state dynamics) to
be controlled by the large-scale context.

If desired, the BL correction can easily be determined from

­4xB
­z 4 1 4q4xB 5 0, (17)

with xB 5 2xI and ­zxB 5 0 at z 5 0 (neglecting the much
smaller interior contribution to ­zx at the bottom) and xB " 0
as z " ‘. This has a similar form as the steady canonical 1D
problem with constant mixing coefficients (e.g., Garrett et al.
1993), but the boundary conditions and right-hand side are
different because the transport constraint is imposed and the
interior solution has been subtracted out. The general solu-
tion takes the form of the familiar Ekman spiral:

xB 5 2xIe
2qz(cosqz 1 sinqz), (18)

where xI is evaluated at z 5 0 as in (16).
This analytical expression for the BL correction also allows

us to directly diagnose how the far-field along-slope flow is in-
fluenced by the BL. From (8) and (10), the interior along-
slope shear follows thermal wind balance,

­uhI
­z

5 2
1
f
­b′I
­z

tanu, (19)

which implies, upon integration in the vertical,

uhI (z) 5 uhI (0) 2
1
f
[b′I(z) 2 b′I(0)]tanu: (20)

The integration constant uhI (0), the flow at the upper edge of
the BL, can be determined from the BL solution (18) and (8):
uhI (0)5 2uhB(0)5 2fxI(0)/qn(0). This BL contribution to the
interior along-slope flow has the same form as the steady-state
canonical result with constant mixing coefficients (Thorpe
1987; Garrett et al. 1993), but here it is rapidly spun up and
accompanied by an additional interior thermal-wind compo-
nent. We will see in section 4 that this BL contribution is
typically of higher asymptotic order than the thermal wind
contribution.

It should be noted that the key results (15) and (16) also ap-
ply if there are variations in the mixing coefficients within the
thin BL, as may be expected as the turbulence becomes sup-
pressed very close to the bottom. The physics that lead to (15)
and (16) are that the diffusive buoyancy flux into the BL is
balanced by cross-slope advection within the BL and that the
interior obeys (10). While the BL corrections are more

FIG. 2. Sketch of BL theory framework for (a) 1D dynamics over a uniform slope and (b) 2D dynamics over more
complicated topography.
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complicated if n and k are not approximately constant across
the BL, for example including a log-layer if the mixing coeffi-
cients go to zero near the bottom, the effective boundary con-
dition for the interior is the same.

In summary, BL theory has enabled us to elucidate the con-
nection between the BL and interior in 1D. The BL transport
quickly adjusts to (16), regardless of the interior dynamics.
This transport allows the BL to communicate with the interior
by moving dense water up the slope, providing a buoyancy
sink and modifying the interior bottom boundary condition
(15) (Fig. 2a). In 1D, the BL is thus independent of the evolu-
tion of the interior, yet the cross-slope advection by the BL
transport affects the interior dynamics. As we will see in the
next section, the BL–interior coupling in 2D is even richer,
with the interior being able to feed back onto the BL. But
first, we present some illustrative 1D examples.

c. Examples

The following experiments depict 1D PG spinup with and
without BL theory. The simulations start in a state of rest: iso-
pycnals are flat (b′ 5 0), and the flow is zero (x 5 0). The tur-
bulent mixing then generates a buoyancy perturbation,
bending isopycnals into the slope and spinning up a circulation.
The transport constraint ensures that BL transport is exactly re-
turned in the interior, and without a source of dense bottom wa-
ter, the initial stratification is mixed away with time.

To numerically solve the 1D PG equations, we use second-
order finite differences as in PC22. The model can either solve
for the full flow and density profiles using Eqs. (6) and (7) or
evolve the interior variables of the BL theory with Eq. (11).
Model parameters are adapted from Callies (2018) and roughly
match those of the Brazil Basin (Table 1). Mixing is represented
by a bottom-intensified profile of turbulent diffusivity,

k 5 k0 1 k1e
2z/h, (21)

with parameters obtained from a fit to Brazil Basin observa-
tions (Callies 2018; Table 1). When solving the full 1D PG
equations, grid spacing follows Chebyshev nodes with resolu-
tion on the order of 0.1 m at z 5 0 to comfortably resolve the
boundary layers. The BL simulations need not resolve the
thin bottom BL, and we therefore use a uniform grid spacing
of 8 m for these. The domain height of 2 km is large enough
that upper-boundary effects do not affect the solution. The
model is integrated forward in time using an implicit timestep-
ping scheme with a time step of one day.

The 1D BL model yields an excellent approximation of the
full 1D PG solution (Fig. 3). The interior dynamics match the
interior of the full solution, and although the BL model only
explicitly computes the interior evolution, the BL correction
computed offline from (18) is very accurate. The match is triv-
ial when m 5 1 and .5 1023, because the shallow slope leads
to a relatively weak BL transport, and thus the advective
modification to the buoyancy flux in (11) and (15) is negli-
gible. The interior system is then nearly identical to the full
one, with diffusion dominating the dynamics. The case where
. 5 0:5, in contrast, is a more trying test of the 1D BL theory.
The BL transport in this case is an order of magnitude larger

than before, leading to enhanced stratification in the BL. This
is properly captured in the BL model, with the interior stratifi-
cation reaching about 0.4 3 1026 s22 at the bottom and the
BL correction bringing it smoothly to zero.

The assumption of 1D dynamics breaks down as soon as
lateral variations in the slope are allowed, but we can antici-
pate the upcoming 2D results using intuition derived from the
above 1D theory. Equation (16) gives an explicit expression
for the BL transport in 1D depending on the local slope angle
u and buoyancy gradient across the slope N2 tanu. In 2D,
these inputs are spatially dependent, with horizontal buoy-
ancy gradients also varying in time as part of the interior dy-
namics. Local 1D theory would thus predict convergences and
divergences in BL transport, generating BL–interior mass ex-
change (Fig. 2b). This leads to a more complex picture in 2D,
with interior dynamics feeding back onto the BL, as we will
see in the following section.

3. Two-dimensional boundary layer theory

In this section, we extend the 1D BL theory to the 2D PG
equations in terrain-following coordinates. We first derive the
2D BL equations and then apply them to idealized numerical
simulations.

a. Boundary layer theory

In 2D, the interaction between the BL and interior is more
interesting because, in addition to the BL advection imposing a
buoyancy flux on the interior, variations in the BL transport pro-
duce mass exchange with the interior (e.g., Phillips et al. 1986;
McDougall 1989; Kunze et al. 2012; Dell and Pratt 2015; Ledwell
2018; Holmes et al. 2018). The BL theory generalizes from 1D to
2D and brings these physics into clearer focus.

Applying the BL theory to the 2D PG equations is most
easily done in terrain-following coordinates:

j 5 x, h 5 y, s 5
z
H

, (22)

where H(x) is the fluid depth (Fig. 4). Under this transforma-
tion, derivatives in (x, z) space become

­

­x
5

­

­j
2

s­xH
H

­

­s
and

­

­z
5

1
H

­

­s
, (23)

and the contravariant velocity components are

uj 5 ux, uh 5 uy, and us 5
1
H

uz 2 s
­H
­x

ux
( )

, (24)

TABLE 1. Parameters used in simulations of spinup, adapted
from Callies and Ferrari (2018) and roughly corresponding to
the mid-Atlantic ridge flank in the Brazil Basin.

Inertial frequency f 25.5 3 1025 s21

Far-field buoyancy frequency N 1023 s21

Far-field diffusivity k0 6 3 1025 m2 s21

Bottom-enhancement of diffusivity k1 2 3 1023 m2 s21

Decay scale of diffusivity h 200 m
Prandtl number m 1

P E T ER SON AND CA L L I E S 311JANUARY 2023

Unauthenticated | Downloaded 12/29/22 07:20 PM UTC



assuming no variations in h [see appendix B of Callies and
Ferrari (2018) for more details]. The 2D PG equations in
terrain-following coordinates are then

2fuh 5 2
­p
­j

1 s
­H
­x

b 1
1
H2

­

­s
n
­uj

­s

( )
, (25)

fuj 5
1
H2

­

­s
n
­uh

­s

( )
, (26)

1
H

­p
­s

5 b, (27)

­

­j
(Huj) 1 ­

­s
(Hus) 5 0, (28)

­b
­t

1 uj
­b
­j

1 us
­b
­s

5
1
H2

­

­s
k
­b
­s

( )
, (29)

where p is the pressure divided by a reference density. The
boundary conditions are again an insulating and no-slip bot-
tom, ­sb 5 0 and uj 5 uh 5 0 at s 5 21; a constant-flux and

free-slip top H21­sb 5 N2 and ­su
j 5 ­su

h 5 0 at s 5 0; and
no normal flow across both boundaries, us 5 0 at s 5 21
and 0. We neglect horizontal turbulent fluxes, consistent with
the assumption of a small aspect ratio if the turbulence is
close to isotropic. This is in contrast with some other PG
models, which employed horizontal diffusion terms to sat-
isfy the no-normal-flow condition at vertical sidewalls (e.g.,
Colin de Verdière 1986; Samelson and Vallis 1997).

As before, we express the momentum equations (25)–(28)
as one streamfunction inversion. We define x(j, s) such that
the continuity equation (28) is automatically satisfied:

Huj 5
­x

­s
and Hus 5 2

­x

­j
: (30)

Integrating (26) from some level to s 5 0, we obtain

1
H

­uh

­s
5

f
n
(x 2 Uj), (31)

as in Eq. (8). Here, Uj 5
�0
21Huj ds is the vertically inte-

grated transport, a constant in j by continuity. Combining

FIG. 3. Comparison of the 1D BL solution with full 1D PG spinup over two different slope an-
gles. Shown are the (a),(d) streamfunction x, (b),(e) along-slope flow uy 5 uh, and (c),(f) stratifica-
tion N2 1 ­zb′ as functions of z 5 z for separate simulations in which the slope Burger number is
(top) . 5 1023 , corresponding to a bottom slope of u ’ 1.73 1023 rad, and (bottom) .5 0:5 so
that u ’ 3.93 1022 rad. The insets of (a) and (d) show the streamfunction x in the bottom 100 m,
showcasing the accuracy of the BL correction. The 1D BL theory matches the 1D dynamics
perfectly.
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H21­s of (25) and ­j of (27) and substituting H21­su
h from

(31) yields the streamfunction inversion equation similar to 1D:

1
H4

­2

­s2 n
­2x

­s2

( )
1

f 2

n
(x 2 Uj) 5 ­b

­j
2

s

H
­H
­x

­b
­s

: (32)

The boundary conditions are similar to the 1D case but for a
finite domain: x 5 0 and ­sx 5 0 at s 5 21 and x 5 Uj and
­2sx 5 0 at s 5 0.

Splitting b and x into BL and interior contributions and ne-
glecting the fourth-order term in (32) in the interior as before,
the interior inversion reads

f 2

n
xI 5

­bI
­j

2
s

H
­H
­x

­bI
­s

5
­bI
­x

, (33)

setting Uj 5 0 as implied by a configuration that is symmetric
in x (see appendix A for the Uj Þ 0 case). The circulation in
the x–z plane is simply proportional to the buoyancy gradient
in x. The interior buoyancy evolution is given by

­bI
­t

1
1
H

­xI
­s

­bI
­j

2
­xI
­j

­bI
­s

( )
5

1
H2

­

­s
k
­bI
­s

( )
: (34)

The BL physics appear in the boundary condition on the inte-
rior buoyancy field. The BL buoyancy budget, assuming a
quasi-steady state and a slowly varying interior buoyancy
field, is

1
H

­xB
­s

­bI
­j

5
1
H2

­

­s
k
­bB
­s

( )
, (35)

with ­jbI evaluated at s 5 21. The neglected advection terms
are smaller by a factor (qH)21 ,, 1 than the terms retained
in (35). This is because the boundary conditions enforce that
xB ; xI and ­sbB ; ­sbI, such that ­sxB ; (qH)­sxI and
bB ; (qH)21bI (see section 4 for more details). Vertically in-
tegrating (35) across the BL and applying the boundary condi-
tions xI 1 xB 5 0 and ­sbI 1 ­sbB 5 0 at s 5 21, as well as
decay conditions for xB and ­sbB, yields

xI
­bI
­j

5
k

H
­bI
­s

at s 5 21: (36)

Substituting this bottom boundary condition for the interior
into the interior inversion (33), we again arrive at an explicit
formula for this BL transport:

xI 5
k

­H
­x

m

f 2
­H
­x

­bI
­j

1 2
m

f 2
­H
­x

­bI
­j

5

n

f 2
­bI
­j

1 2
m

f 2
­H
­x

­bI
­j

at s 5 21: (37)

This is the generalization of the 1D result (16): 2­xH is ana-
logous to the local slope tanu and ­jbI now takes the place of the
previously constant cross-slope buoyancy gradient N2 tanu. Note
that this expression is again well behaved in the limit of small
slopes (­xH " 0) and thus gives a globally valid expression
for the BL transport and of the mass exchange HusI 5 2­jxI at
s 5 21 between the BL and the interior.

As in 1D, we can now explicitly describe contributions to
the interior along-slope flow from thermal wind in the interior
and a contribution from shear in the BL. Combining (31) and
(33) yields the thermal-wind balance

1
H

­uhI
­s

5
1
f
­bI
­x

, (38)

which, upon integration in the vertical, becomes

uhI (s) 5 2
fxI(21)
n(21)q 1

H
f

�s

21

­bI
­x

(s̃) ds̃: (39)

The first term again represents the BL contribution uhI 5 2uhB
at s 5 21, which may be computed directly from the BL
solution

xB 5 2xIe
2qH(s11)[cos qH(s 1 1) 1 sin qH(s 1 1)], (40)

similar to (18). Here q can still be written in the same form
as in (9) but with a generalized slope Burger number
.5 2­xH­jbI(21)/f 2, which varies in the horizontal. Equation
(39) has the same form as (20), except that cross-slope buoyancy
gradients can now contribute to the thermal-wind term.

In 2D, we again find that the interior solution experiences a
buoyancy flux due to the cross-slope advection by the BL
transport. In contrast to the 1D case, however, both the BL
transport given by (37) and the cross-slope buoyancy gradient
­jbI may vary in time and space (Fig. 2b). Convergence in the
BL transport then drives mass injection into the interior, fur-
ther altering ­jbI and continuing the feedback process.

It is worth noting that BL theory can also be applied to a pas-
sive tracer, not just buoyancy. The interior tracer concentration
would have a similar effective boundary condition capturing
transport by BL flow. The interior tracer equation should also
include a representation of along-isopycnal stirring (Redi 1982).

b. Examples

We now illustrate these theoretical results using numerical
simulations over idealized topographies. We solve the full 2D

FIG. 4. Sketch of terrain-following coordinates used in 2D BL
theory. The covariant basis vector of coordinate j is denoted by ej,
and the corresponding contravariant component of the velocity
vector is denoted by uj, such that u5 ujej (summation implied).
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PG system (29) and (32) and the 2D BL PG system (33) and
(34) using numerical methods and model parameters similar to
the 1D case described above. The mixing profile is now written as

k 5 k0 1 k1e
2(z1H)/h, (41)

following the bottom topography. First, we study spinup over
an idealized azimuthally symmetric seamount with constant
initial stratification. We then analyze spinup over an idealized
mid-Atlantic ridge with both constant and exponentially vary-
ing initial stratification. As in the 1D spin up experiments, the
simulations all start with flat isopycnals and no flow. The cir-
culation that emerges is powered by the potential-energy
source k­zb integrated over the domain.

1) IDEALIZED SEAMOUNT

The topography of the abyssal ocean has a range of slopes.
Seamounts, for instance, can reach slope Burger numbers of
order 10 or more and have received some attention regarding
their role in the abyssal overturning circulation (e.g., McDougall
1989; McDougall and Ferrari 2017; Ledwell 2018; Holmes et al.
2018). The 1D BL theory [Eq. (11)] is sensitive to the slope Bur-
ger number, with a steeper slope leading to a larger modification
of the diffusive buoyancy flux by advection. At the same time,
the 2D BL theory shows that horizontal variations in this slope
lead to gradients in BL transport that are not taken into account
by the 1D theory. In this section, we therefore compare both 1D
and 2D BL solutions to the full 2D PG flow over a seamount.

Similar to the analysis in Ledwell (2018), we consider an az-
imuthally symmetric Gaussian seamount in axisymmetric co-
ordinates (Fig. 5). On an f plane, the flow is invariant under
rotation about the center of the seamount, allowing us to fully
describe the flow using 2D theory (see appendix B). The
depth of the seafloor as a function of distance r from the sym-
metry axis is given by

H(r) 5 H0 2 A exp 2
r2

2‘2

( )
, (42)

where the maximum depth is H0 5 5.5 km, the height of the
seamount is A 5 3 km, the width of the seamount is
‘ � 50 km, and the width of the domain is L 5 200 km. We as-
sume no flow at r 5 0 and allow the flow to evolve freely at
r5 L, consistent with our assumption that horizontal diffusion
may be neglected. In the horizontal, the grid has an even spac-
ing of about 0.8 km. As in the 1D models, we use Chebyshev
nodes in the vertical when solving the full 2D PG equations
(with a near-bottom resolution of about 1025 in s space) and
uniform grid spacing for the 2D BL equations (with a reso-
lution of about 1023 in s space). We initialize the model at
rest with a constant stratification b 5 N2z and use a mixed
implicit–explicit time integration scheme with a time step of
one day.

At the steepest point on the seamount (r5 50 km; red lines in
Fig. 5), the slope Burger number . is on the order of unity. The
1D BL solution applied at this position overpredicts the stratifi-
cation in the bottom 500 m and underpredicts it above (Fig. 6).
This leads to errors in the predicted interior along-slope flow,

which can be understood from (20) and (39): even subtle
changes in the buoyancy field can lead to substantial impacts on
uhI after being integrated throughout the column. The 1D BL
solution’s buoyancy field differs from that of the 2D solution be-
cause its secondary circulation, enforced simply by a transport
constraint, is stronger. This is due to the lack of a two-way feed-
back in 1D; the BL cannot exchange mass with the interior and
the induced changes in the interior do not reduce the BL trans-
port. The 2D BL theory, in contrast, captures these physics and
agrees well with the full 2D model. This confirms that the 2D
BL equations are capable of fully capturing 2D PG spinup, even
in regimes with relatively large variations in local slope.

2) EXPONENTIAL BACKGROUND STRATIFICATION

The simulations presented so far were initialized with a
constant background stratification. In the real ocean, the strat-
ification varies significantly in the vertical, often decreasing
close to exponentially with depth (e.g., Munk 1966). A num-
ber of studies have attempted to discern how this may shape
the abyssal circulation, often qualitatively arguing that variations
in stratification across slopes must lead to gradients in BL trans-
ports, inducing BL–interior exchange (e.g., Phillips et al. 1986;
Salmun et al. 1991). Quantitative explanations of this process,
however, have remained complicated and opaque at best. A ma-
jor benefit of the BL theory framework built up here is that it
provides concise expressions for the BL transport in terms of
interior variables, allowing us to reason about how varying back-
ground stratification might impact the abyss with minimal math-
ematical gymnastics.

Let us consider an idealized mid-Atlantic ridge, following
previous studies of mixing-generated spinup in the abyss

FIG. 5. Flow fields in a simulation of mixing-generated PG
spinup over an idealized 2D seamount. Shown are (a) the stream-
function x (shading and black contours) with positive values indi-
cating counterclockwise and negative values indicating clockwise
flow and (b) the along-slope flow uy 5 uh. The solution is shown af-
ter 20 years of spinup. The gray curves show isopycnals, and the
red vertical lines show where 1D profiles are examined in Fig. 6.
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(e.g., Ruan and Callies 2020; Drake et al. 2020; PC22). The
depth of the 2D ridge is given by

H(x) 5 H0 1 A cos
2px
L

, (43)

where the mean depth isH05 2 km, the amplitude isA5 800 m,
and the width is L 5 2000 km (Fig. 7). At the steepest point on
the ridge, the slope Burger number . is approximately 23 1023,
typical of the mid-Atlantic ridge. We apply periodic boundary
conditions at x 5 0 and x 5 L and use a constant horizontal
grid spacing of about 8 km. The vertical grid spacing is as be-
fore. We run one simulation with constant initial stratification
as before and one initialized with an exponential stratifica-
tion: ­zb ~ ez/d. We set the decay scale to d 5 1000 m and
choose the proportionality constant such that the bottom
stratification at the center of the ridge flank matches that of
the simulation with constant N2 5 1026 s22. We again use a
mixed implicit–explicit timestepping scheme, this time with a
time step of 10 days, enabled by the much weaker advective
terms.

The circulation in the case with exponential initial stratification
is stronger and more confined to the peak of the ridge compared
to the case with constant initial stratification (Figs. 7a,b). This is
better understood by the explicit formula for 2D BL transport de-
rived in the previous subsection. Evaluating Eq. (37) for these
simulations, we see that the BL transport is enhanced at the peak
of the ridge with exponential background stratification (Fig. 7c).
For the small slopes in this simulation, Eq. (37) reduces to

xI ’
n

f 2
­bI
­j

at s 5 21: (44)

In the case with constant stratification, the initial cross-slope
buoyancy gradient is proportional to 2­xH and does not
change appreciably with time, explaining the sinusoidal BL
transport. For exponential stratification, in contrast, we have
­jbI ~ 2e2H/d­xH, which is enhanced at shallower depths. As
a result, the exchange velocity

Hus 5 2­jxI ’ 2
n

f 2
­2bI
­j2

at s 5 21 (45)

FIG. 6. Comparison of the 1D and 2D BL solutions with full 2D PG mixing-generated spinup
over a seamount. Profiles are taken at the steepest slope on the seamount (red lines in Fig. 5).
Shown are the (a),(d) streamfunction x, (b),(e) along-slope flow uy 5 uh, and (c),(f) stratification
­zb. The insets of (a) and (d) show the streamfunction x in the bottom 50 m, showcasing the BL
correction. The 1D BL solution is a decent approximation to the flow, but the cross-slope varia-
tions considered in the 2D BL theory allow it to better match the full 2D solution in this high
slope Burger number regime.
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is also enhanced for the case with exponential stratification
(Fig. 7d). In both cases, ­jbI does not evolve much in the first
three years, so the exchange does not either. The BL theory ena-
bles us to easily and quantitatively understand this behavior.

4. Asymptotic theory

In the previous sections, we derived the BL equations
somewhat heuristically, glossing over some detail of the un-
derlying asymptotics. In this section, we present a more rigor-
ous derivation of the BL theory that justifies the claims in the
previous sections and sheds light on the asymptotic orders of
the various components of the flow. The casual reader should
note that the contents of this section are not required to un-
derstand the main results of the paper.

We show below that, in both 1D and 2D, the cross-slope
flow is of lower order than the along-slope flow in the interior,
aligning with our intuition from the examples above. The inte-
rior flow evolves on a slow time scale driven by diffusion and

second-order advection of the leading-order buoyancy in the
interior. The BL flow is of first order, in between the orders of
the interior along- and cross-slope flows. If the transport is
constrained to zero, this implies that the leading-order inte-
rior flow vanishes at the bottom. These results do not gener-
ally hold in 3D, but we leave this generalization to future
work.

a. One-dimensional asymptotics

To begin the formal derivation of the 1D BL equations, we
first nondimensionalize the 1D equations (2)–(5) in order to
isolate the key parameters in the problem. We define charac-
teristic scales for the vertical coordinate, velocities, and mix-
ing coefficients such that

z ; H0, uj, uh ; U, n ; n0, and k ; k0, (46)

where n0 and k0 are characteristic values of n and k. We as-
sume that the pressure and buoyancy terms in (2) scale with

FIG. 7. Simulations of mixing-generated PG spinup over an idealized 2D midocean ridge with varying initial stratifi-
cations. Shown are the streamfunctions x (shading and black contours) with positive values indicating counterclock-
wise and negative values indicating clockwise flow for simulations with (a) constant initial stratification and (b) expo-
nential initial stratification (isopycnals in gray). For each simulation, we show (c) the BL transportUj

B computed from
Eq. (37) and (d) the resulting exchange velocity Hus 5 2­jU

j
B. The solutions are shown after three years of spinup.

The gradient in stratification across the ridge facilitates larger exchange velocities at the peak and flanks.
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the Coriolis term and that the buoyancy perturbation scales
with the background buoyancy scale:

­P
­x

; fU and b′ ;
fU
tanu

5 N2H0: (47)

Assuming an advective time scale, so that

t ;
H0

U tanu
5

f
N2 tan2u

, (48)

then yields the nondimensional 1D equations

2uh 5 2
­P
­x

1 b′ 1 «2
­

­z
n
­uj

­z

( )
, (49)

uj 5 «2
­

­z
n
­uh

­z

( )
, (50)

m.
­b′

­t
1 uj

( )
5 «2

­

­z
k 1 1

­b′

­z

( )[ ]
, (51)

� ‘

0
uj dz 5 Uj, (52)

where all variables are redefined to their scaled versions. The
nondimensional parameters for the 1D problem are thus the
Ekman number «2 5 n0/fH

2
0, the Prandtl number m 5 n0/k0,

and the slope Burger number . 5N2 tan2u/f 2, although m

and . only appear as a product, so m. can be considered a sin-
gle parameter. The reason for defining the Ekman number as
«2 will become clear in the BL analysis below.

To develop the asymptotic theory, we assume the scaling
« ,, 1 and m. ; 1. While the Burger number is typically small
in the abyss, the turbulent Prandtl number may be large if mo-
mentum fluxes by baroclinic eddies are taken into account. If in-
stead m.,, 1, buoyancy advection is negligible in the BL, and
the theory developed with m. ; 1 remains accurate (Fig. 3a).

We begin with the interior and expand all variables in «2:
ujI 5 ujI0 1 «2ujI2 1 · · ·, etc. This expansion into even powers of
« is sufficient because « only appears as «2 in the interior
equations. TheO(1) interior flow then satisfies

2uhI0 5 2
­P0

­x
1 b′I0, (53)

ujI0 5 0, (54)

­b′I0
­t

5 0: (55)

At this order, the interior along-slope flow is in balance with
the barotropic pressure gradient and the projection of the
buoyancy perturbation, and the interior cross-slope flow is
zero. The O(1) buoyancy equation is trivial, implying that the
interior buoyancy evolution is slow compared to the advective
time scale assumed in the scaling.

To obtain the evolution of the O(1) interior buoyancy,
we need to go to O(«2) and also expand the time coordinate,

­t 5 ­t0
1 «2­t2

1 · · ·. Higher-order buoyancy terms inherit the
slow evolution from the low orders, so ­t0

b′I2 5 0. The buoy-
ancy Eq. (51) atO(«2) is then

m.
­b′I0
­t2

1 ujI2

( )
5

­

­z
k 1 1

­b′I0
­z

( )[ ]
: (56)

This implies that advection and turbulent diffusion operate on
a slow time t2. Since the O(1) and O(«) interior cross-slope
flows are zero, the dominant buoyancy advection is by the
second-order flow in the interior, given by (50) atO(«2):

ujI2 5
­

­z
n
­uhI0
­z

( )
: (57)

Equations (53), (56), and (57) comprise the leading-order
interior dynamics. They can be expressed in terms of the
streamfunction xI, whose leading non-zero component is xI2,
recovering (10) and (11) above (assuming Uj 5 0). The inte-
rior along-slope flow can be obtained by integrating the ther-
mal wind balance ­zu

h
I0 5 2­zb

′
I0, which follows from a

z-derivative of (53):

uhI0 5 uhI0(0) 2 [b′I0 2 b′I0(0)] (58)

The integration constant uhI0(0) must be determined from the
BL correction. If the transport constraint is Uj 5 0, one finds
that uhI0(0)5 0.

In the thin bottom BL, z-derivatives are enhanced, elevat-
ing the diffusion terms in (49)–(51) to O(1). Given that the
BL thickness scales with «, we assume the BL variables to de-
pend on the rescaled vertical coordinate z 5 z/«, with which
­z 5 «21­z . The nondimensional BL equations are then

2uhB 5 b′B 1
­

­z
n
­ujB
­z

( )
, (59)

ujB 5
­

­z
n
­uhB
­z

( )
, (60)

m.
­b′B
­t

1 ujB

( )
5

­

­z
k
­b′B
­z

( )
: (61)

Crucially, the insulating bottom boundary condition picks up
a factor of «21 after this rescaling:

1 1
­b′I
­z

5 2
1
«

­b′B
­z

at z 5 0: (62)

This factor of «21 means that we need an O(«) BL buoyancy
to absorb the O(1) interior buoyancy flux into the BL. We
thus expand the BL variables in terms of « rather than «2. We
immediately find that the O(1) BL buoyancy flux must vanish
at the bottom: ­zb

′
B0 5 0. In the case with zero net transport

(Uj 5 0), this condition, along with the boundary conditions
on the flow ujB0 5 0 and uhB0 5 2uhI0 at z 5 0, forces the O(1)
BL flow to vanish and theO(1) interior along-slope flow to go
to zero at the bottom, consistent with the examples shown in
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Fig. 3 (see appendix A for the Uj Þ 0 case). The BL flow in-
stead comes in at O(«), in between the orders of the interior
along- and cross-slope flows. ThisO(«) BL flow satisfies

2uhB1 5 b′B1 1
­

­z
n
­ujB1
­z

( )
, (63)

ujB1 5
­

­z
n
­uhB1
­z

( )
, (64)

m.ujB1 5
­

­z
k
­b′B1
­z

( )
, (65)

with the bottom boundary conditions ­zb
′
B1 5 2(11 ­zb

′
I0),

ujB1 5 0, and uhB1 5 0. The tendency term ­t0
b′B1 is dropped

because the interior does not evolve on this time scale, so
the BL will not either. These BL equations are equivalent
to (12) and (17).

This more rigorous derivation of the 1D BL equations clari-
fies the asymptotic orders of the various components of the
flow. The leading-order contributions are O(«2) for the inte-
rior cross-slope flow, O(1) for the interior along-slope flow,
andO(«) for both components of the BL flow. Buoyancy does
not have anO(1) BL correction}only its derivative does.

b. Two-dimensional asymptotics

The 2D asymptotics follow in much the same way as in 1D.
We again nondimensionalize the equations of motion (25)–
(29), setting characteristic scales equivalent to (46)–(48):

j ; L, uj,uh ; U, us ;
U
L
, H ; H0, n ; n0,

k ; k0, p ; UfL, b ;
fUL
H0

5 N2H0, t ;
L
U

·
(66)

We then arrive at the nondimensional 2D PG equations

2uh 5 2
­p
­j

1 s
­H
­x

b 1
«2

H2

­

­s
n
­uj

­s

( )
, (67)

uj 5
«2

H2

­

­s
n
­uh

­s

( )
, (68)

1
H

­p
­s

5 b, (69)

­

­j
(Huj) 1 ­

­s
(Hus) 5 0, (70)

m.
­b
­t

1 uj
­b
­j

1 us
­b
­s

( )
5

«2

H2

­

­s
k
­b
­s

( )
, (71)

where .5N2H2
0 /f

2L2 is now the conventional Burger num-
ber. Assuming the scaling « ,, 1 and m. ; 1, expanding inte-
rior variables in «2, and matching orders as before, we arrive
at the complete set of interior equations

2uhI0 5 2
­pI0
­j

1 s
­H
­x

bI0, (72)

ujI2 5
1
H2

­

­s
n
­uhI0
­s

( )
, (73)

1
H

­pI0
­s

5 bI0, (74)

­

­j
(HujI2) 1

­

­s
(HusI2) 5 0, (75)

m.
­bI0
­t2

1 ujI2
­bI0
­j

1 usI2
­bI0
­s

( )
5

1
H2

­

­s
k
­bI0
­s

( )
: (76)

We again find that the interior along-slope flow is of lower
order than the interior cross-slope flow, and the interior buoy-
ancy evolution is again slow. In 2D, the interior slope-normal
flow usI2 comes in, contributing a second-order advective flux in
the vertical, along with the cross-slope advection. Formulated
using the streamfunction xI2, this recovers the interior Eqs. (33)
and (34) derived above. The O(1) interior along-slope flow can
again be obtained by integrating thermal wind in the vertical,
with the bottom correction uhI0(21) dropping out forUj 5 0.

The BL contribution can again be assessed after a rescaling
of the vertical coordinate such that s 5 s/«. We again find
that the O(1) BL flow, along with the interior along-slope
flow uhI0 at the bottom, vanishes when Uj 5 0. The BL flow is
instead ofO(«), satisfying

2uhB1 5 2
­H
­x

bB1 1
1
H2

­

­s
n
­ujB1
­s

( )
, (77)

ujB1 5
1
H2

­

­s
n
­uhB1
­s

( )
, (78)

m.ujB1
­bI0
­j

5
1
H2

­

­s
k
­bB1
­s

( )
, (79)

with hydrostatic balance and continuity implying that pB1 5 0
and usB1 5 0, respectively. The BL is again characterized by a
balance between cross-slope advection and down-gradient dif-
fusion of buoyancy, with the BL buoyancy flux due to bB1 bal-
ancing the interior buoyancy flux due to bI0 at the bottom as
before: 11 ­sbI0 5 2­sbB1 at s 5 21. The tendency term
in (79) is again dropped because the interior evolution is
slow, so the BL evolution must be slow as well. Expressing
HujB1 5 ­sxB2, vertically integrating (79), and enforcing
xI2 1 xB2 5 0 at s 5 21 yields an effective boundary con-
dition on the interior. The BL–interior exchange velocity
usI2 5 2usB2 at s 5 21 may be obtained by vertically
integrating

­

­j
(HujB1) 1

­

­s
(HusB2) 5 0: (80)

The leading-order equations obtained using this more rigorous
approach again match the expressions derived heuristically

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 53318

Unauthenticated | Downloaded 12/29/22 07:20 PM UTC



above. The asymptotic orders revealed by this approach are
the same as in the 1D case.

5. Discussion

Callies and Ferrari (2018) studied the mixing-generated
abyssal circulation in an idealized global basin using PG dy-
namics, but their model employed Rayleigh drag rather than
a Fickian friction. The models and theory presented here
make use of a downgradient turbulence closure of the mo-
mentum fluxes, allowing them to produce more realistic BLs
and avoid unphysical interior momentum sinks. Still, the re-
sults presented here provide some insight into the conclusions
from this previous study. With Rayleigh drag, Callies and
Ferrari (2018) found that the canonical 1D model was a rea-
sonably accurate emulator for the full dynamics over slopes
with a constant initial stratification. This may have been some-
what of a coincidence, as in their case the steady-state canoni-
cal transport k‘ cotu was zero everywhere, adding a transport
constraint to the canonical 1D model. With Fickian friction,
setting k‘ 5 0 does not immediately make the canonical 1D
model equivalent to the transport-constrained 1D model be-
cause it still evolves diffusively and with nonzero transport,
taking thousands of years to equilibrate (PC22). Rayleigh
drag, in contrast, damps flow in the interior, allowing for fast
adjustment (in a matter of years; not shown) to the Uj 5 0
steady state. The combination of k‘ 5 0 and Rayleigh drag
thus conspired to let Callies and Ferrari (2018) get the right
answer from the canonical model, but modifying either of
these choices would have made the argument fall apart.

Furthermore, Callies and Ferrari’s (2018) application of BL
theory was somewhat ad hoc. For slopes steep enough for the
canonical BL theory to apply, the steady-state transport was
exactly zero, meaning that all upslope transport was exactly
balanced by downslope transport above. The BL theory
broke down at the base of the slopes, allowing the BLs to be
fed by dense water from the south and the less dense downw-
elled water to return south, forming a basinwide circulation
that constituted an overturning. The overturning transport
could thus be estimated with an isobath integral of the up-
slope transport in BLs on the slopes. As Drake et al. (2020)
pointed out, however, this approach is not successful if the in-
terior stratification is far from constant and canonical BL the-
ory does not apply. The theory presented here supplies a
globally valid expression for the BL transport that allows for
variations in the interior stratification. At this point, this ex-
pression is only a diagnostic tool, itself depending on the in-
terior dynamics, but it unambiguously describes how the
interior can exert control on the BL, and vice versa, ultimately
generating a basinwide circulation that involves both BL and in-
terior pathways}and mass exchange between them. This
sharpens our view of the abyssal overturning, with no confusion
about the roles of the BL and interior.

The framework presented here can also help understand
the results from Drake et al. (2020) regarding how water mass
transformations are affected by changes in the interior stratifi-
cation. Using the same 3D PG model with Rayleigh friction
as in Callies and Ferrari (2018), they found that the degree of

compensation between BL upwelling and interior downwelling
is strongly dependent on vertical variations in the initial stratifi-
cation. With only the canonical 1D theory as a starting point,
they were unable to explain the vertical extent and structure of
water mass transformations. The BL theory presented here
would enable us to understand these physics more clearly, be-
cause it explicitly separates the BL and interior components of
the flow. This allows us to describe the abyssal circulation in
terms of flows into and out of the BL, rather than simply bulk
diapycnal motion throughout the water column. In section 3, we
demonstrated the power of this framework in describing abyssal
spinup in 2D with exponential initial stratification. Applied to
3D simulations such as those in Drake et al. (2020), this ap-
proach would undoubtedly shed light on what shapes the verti-
cal structure of water mass transformations in the abyss.

Here, we have only presented results in 1D and 2D. We
leave the 3D case to a future paper, but preliminary work in-
dicates that much of the theory developed here carries over,
although there are some key differences. In 3D, the interior
dynamics satisfies geostrophic balance in both the j and h di-
rections. Because of this, the asymptotics in 3D are qualita-
tively different from those presented in section 4 of this
paper: instead of evolving on a slower time scale, the leading-
order 3D interior buoyancy field is advected by the geo-
strophic velocities, with diffusion only playing a role at higher
order. We anticipate that this qualitative difference between
2D and 3D may be crucial in explaining the full 3D abyssal
circulation. In 3D, it is also no longer possible to write the PG
inversion in terms of a scalar streamfunction. This makes the
mathematics more complicated, but it is still possible to write
down an expression for the 3D BL transport in terms of inte-
rior variables evaluated at the bottom. As in 2D, the 3D BL
mass and buoyancy transports feed back on the interior, now
with gradients in the h direction shaping the flow field. A fu-
ture extension to 3D will allow us to explain the dynamics of
abyssal circulations in more complicated and realistic geome-
tries, including cases with variations in f.3

Our BL theory results are not only theoretically useful but
could also lighten the computational demand of simulating
the abyssal circulation. The interior solution can be com-
puted without the need to resolve the thin BL, allowing nu-
merical models to have coarser grids and larger time steps.
This is crucial when studying the 3D system over long abyssal
time scales of thousands or tens of thousands of years (e.g.,
Wunsch and Heimbach 2008; Liu et al. 2009; Jansen et al.
2018). This framework could even be used to analyze tracer
transport without explicitly resolving the BL, allowing us to
better understand carbon and heat storage (e.g., Sarmiento
and Toggweiler 1984) and Lagrangian pathways (e.g.,
Rousselet et al. 2021) in the abyss. If needed, the BL correc-
tion can be computed after the fact on a finer grid as was
done for Figs. 3 and 6.

3 Variations in f will allow for vortex stretching in the absence of
friction: buy 5 f­zu

z, where b 5 ­yf. In the f-plane solutions con-
sidered here, a non-zero interior vertical velocity only appears at
second order (see section 4).

P E T ER SON AND CA L L I E S 319JANUARY 2023

Unauthenticated | Downloaded 12/29/22 07:20 PM UTC



Although the results presented here are derived in the con-
text of PG dynamics, they might also point the way toward a
parameterization of the effects of BLs over a sloping seafloor
in primitive equation models. Applying effective boundary
conditions on the interior evolution, following the BL frame-
work, should most easily be accomplished in models with
terrain-following coordinates. But a translation to z coordinates
also appears feasible, which would alleviate not only the
need to resolve thin boundary layers in the vertical but also
the need to capture BL flow across the artificial steps in the
topography in such models. An extension of the BL theory
to 3D is needed, however, to produce expressions directly
useful for such a parameterization effort.

The circulation in the examples presented in this paper de-
pend on the particular, simple closure of turbulent momentum
and buoyancy fluxes employed in all of them. Although Fickian
friction is much more physical than Rayleigh drag, our use of it
with a simple profile for n still glosses over the true complexity
of turbulence in the abyss. Without a more faithful representa-
tion of the internal-wave field and baroclinic eddies in abyssal
mixing layers, we cannot claim to be accurately simulating the
dynamics of the real ocean. The BL framework, however, is ro-
bust to the choice of turbulence parameterization}as long as
the vertical scale of the turbulent mixing in the interior is larger
than the thickness of the BL, our approach should require mini-
mal modification. The results presented here are in terms of a
particular choice of parameterization, but the general themes
describing how the BL and interior communicate will carry
over to more complex closures. This flexibility makes BL the-
ory an attractive tool for understanding the mixing-generated
abyss over a hierarchy of complexities.

6. Conclusions

Motivated by observations of bottom-enhanced mixing, re-
cent work on the abyssal circulation has focused on the role
of thin bottom BLs (Ferrari et al. 2016; de Lavergne et al.
2016; McDougall and Ferrari 2017; Holmes et al. 2018; Callies
and Ferrari 2018; Drake et al. 2020). Until now, the coupling
between these BLs and the interior circulation remained opa-
que, with most of our understanding coming from somewhat
heuristic arguments using 1D theory. The framework pre-
sented in this work uses BL theory to paint a clear picture of
the interior–BL interaction of the mixing-generated abyssal
circulation. By explicitly defining BL and interior contributions
to the flow, we obtain expressions for the BL transport in 1D
and 2D that are bounded for all bottom slopes, solving the old
1D conundrum of the steady total transport k‘ cotu being set by
the far-field mixing and diverging for small slopes. In the revised
theory, the BL transport is set by local flow parameters and inte-
rior variables evaluated at the bottom, with the total transport
allowed to evolve according to the global context. The interior
dynamics are themselves modified by this BL transport,
which advects dense water up-slope and thus modifies the
interior bottom boundary condition. This two-way coupling
provides a complex yet transparent story of how BLs influ-
ence the abyssal circulation, and this framework makes previ-
ously unwieldy problems, such as determining the response to

vertically varying initial stratification, comparatively simple.
With these promising results, we anticipate that BL theory
will play a crucial role in the development of a more complete
understanding of the abyssal circulation in the real ocean.
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APPENDIX A

BL Theory When Uj Þ 0

For completeness, we here show how the BL theory deriva-
tions in sections 2 and 3 are slightly altered when the transport
Uj is nonzero. In both 1D and 2D, the interior inversion is mod-
ified to include the added transport term. The BL accounts for
1/(11m.) of the total transport, leading to a modified interior
bottom boundary condition compared to before. The 2D case is
special in that the total transport is itself a function of the flow
and geometry of the domain (see appendix B of PC22), allowing
us to derive an explicit equation for Uj in that case.

a. One-dimensional theory

The 1D interior inversion for general Uj is

f 2

n
(xI 2 Uj) 5 2

­b′I
­z

tanu: (A1)

This does not affect ­zxI, leaving the interior evolution equa-
tion (11) unchanged. This new interior balance results in a
modified bottom boundary condition compared with Eq. (15):

k N2 1 (1 1 m.) ­b
′
I

­z

[ ]
5 UjN2 tanu at z 5 0: (A2)

The added flux on the right-hand side represents the inte-
grated buoyancy supplied to the column by the net trans-
port Uj. The BL transport [cf. (16)] now takes the form

xI 5
Uj

1 1 m.
1 k cotu

m.
1 1 m.

at z 5 0, (A3)

supplying a fraction of the total transport. For m.,, 1,
the BL absorbs the majority of the added transport. Note
that the bottom boundary condition may be written as
k(N2 1 ­zb

′
I)5 xIN

2 tanu regardless of whether Uj is non-
zero. The BL correction xB remains the same as in (18),
with xI at z 5 0 now coming from (A3).

The asymptotic order of Uj must match that of xI, so it
must be restricted to be O(«2). It is then simple to incorpo-
rate Uj Þ 0 into the theory presented in section 4.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 53320

Unauthenticated | Downloaded 12/29/22 07:20 PM UTC

https://github.com/hgpeterson/nuPGCM
https://github.com/hgpeterson/nuPGCM


b. Two-dimensional theory

In 2D, the general interior inversion is

f 2

n
(xI 2 Uj) 5 ­bI

­j
2

s

H
­H
­x

­bI
­s

, (A4)

and again the BL absorbs a fraction of the added transport
so that (37) becomes

xI 5
Uj

1 1 m.
1

k

­xH
m.

1 1 m.
at s 5 21, (A5)

where .5 2­xH­jbI /f
2 at s 5 21. For symmetric topography,

Uj 5 0, but this is not the case in general. We can infer Uj

for asymmetric geometries with knowledge of the interior
buoyancy distribution. Evaluating (39) at s 5 0 and taking
the mean in j, denoted by h·i, we have

huhI (0)i 5 0 5 2h f
qn

xIi 1 hHf �0

21

­bI
­x

(s) dsi, (A6)

where, crucially, the BL transport from Eq. (A5) now de-
pends on Uj. We have assumed that the domain is tall
enough such that gradients in buoyancy at s 5 0 are small
and therefore huhI (0)i5 0. Solving for Uj yields

Uj 5
hH�0

21

­bI
­x

(s) dsi 1 h 1
q

­jbI
1 1 m.i

h f 2

qn
1

1 1 m.i , (A7)

where all variables are evaluated at s 5 21 unless other-
wise noted. Simulations of an asymmetric ridge, similar to
that in appendix B of PC22, confirm the accuracy of this
formula (not shown).

Again, we restrict ourselves to cases where the nondimen-
sional Uj is O(«2), the same order as xI. This is true when the
second term on the right in Eq. (A6) of lower order than the
first. This is always the case after a fast initial adjustment.

APPENDIX B

Axisymmetric Coordinates

For simulations of an idealized seamount, we transform to
axisymmetric coordinates, assuming rotational symmetry. The
depth H is then a function of the radial distance r and invari-
ant under rotation about the origin by some angle f, leading
to effectively 2D flow. Defining r 5 r and s 5 z/H, we have

2rfuf 5 2
­p
­r

1 s
­H
­r

b 1
1
H2

­

­s
n
­ur

­s

( )
, (B1)

rfur 5
r2

H2

­

­s
n
­uf

­s

( )
, (B2)

­p
­s

5 bH, (B3)

­

­r
(rHur) 1 ­

­s
(rHus) 5 0, (B4)

­b
­t

1 ur
­b
­r

1 us
­b
­s

5
1
H2

­

­s
k
­b
­s

( )
: (B5)

The streamfunction inversion takes the same form as in
Cartesian coordinates,

1
H4

­2

­s2 n
­2x

­s2

( )
1

f 2

n
(x 2 U) 5 ­b

­r
2

s

H
­H
­r

­b
­s

, (B6)

with a slight difference in the streamfunction definition due
to the new form of the divergence operator:

ur 5
1
H

­x

­s
and us 5 2

1
rH

­(rx)
­r

: (B7)
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