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ABSTRACT: The circulation of the abyssal ocean is thought to be sustained by turbulence over a rough seafloor. Over
sloping topography, this bottom-enhanced mixing produces diapycnal upwelling within a thin bottom boundary layer and
downwelling aloft. Simplified theories have been developed to understand this local response to mixing, for example, by as-
suming an along-slope symmetry and imposing a constraint on the cross-slope transport. Ultimately, the local response to
mixing on slopes must be connected to the basin-scale circulation; however, the barotropic transport must conserve poten-
tial vorticity. This coupling between the local response to mixing and the basin-scale circulation is studied here in the con-
text of an idealized bowl-shaped basin using boundary layer theory and numerical solutions of the planetary geostrophic
equations. In the absence of wind forcing and the joint effect of baroclinicity and relief (JEBAR), the leading-order baro-
tropic transport is directed along f/H contours, where f is the planetary vorticity and H is the depth. The local response to
mixing is coupled to this barotropic circulation. It can be thought of as simultaneously constrained by the barotropic circu-
lation and forcing it via a bottom stress curl. If f/H contours are closed, a strong barotropic circulation spins up along them
as in simplified theories of the local response in the absence of along-slope variations. If these contours intersect the bound-
ary, a case more typical in the real ocean, the barotropic transport is suppressed. This decouples the leading-order local re-
sponse from the large-scale circulation and intensifies bottom boundary layer upwelling.
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1. Introduction

After dense Antarctic Bottom Water fills the global abyssal
ocean basins (e.g., Lumpkin and Speer 2007; Talley 2013), it
must undergo diapycnal transformation to return to the surface
and close the overturning (e.g., Munk 1966; Munk and Wunsch
1998; Ferrari 2014). This transformation is achieved by small-
scale turbulent mixing, which we now understand to be bottom-
enhanced over rough topography (e.g., Polzin et al. 1997;
Ledwell et al. 2000; Waterhouse et al. 2014), where internal
waves are prone to breaking (e.g., Garrett and Kunze 2007;
Nikurashin and Ferrari 2011). Considering the one-dimensional
balance between diapycnal advection and diffusion in the
vertical, bottom-enhanced mixing must confine the upwell-
ing needed to close the overturning to the bottom few me-
ters of the water column (e.g., Ferrari et al. 2016; de Lavergne
et al. 2016; McDougall and Ferrari 2017). Recent observations
from a canyon in the Rockall Trough are consistent with this
prediction (Wynne-Cattanach et al. 2024). How this bottom-
enhanced mixing on slopes shapes the hydrography and basin-
scale circulation, however, remains poorly understood.

In some circumstances, it is possible to fully describe the lo-
cal response of a water column to bottom-enhanced mixing us-
ing a one-dimensional model. Canonically, this model of a
rotating and stratified fluid over a sloping seafloor assumes no
cross- or along-slope variations of the flow, pressure, and buoy-
ancy anomalies (e.g., Phillips 1970; Wunsch 1970; Thorpe 1987;
Garrett et al. 1993). It produces a peculiar steady-state solu-
tion, however, in which the vertically integrated cross-slope

transport is set by the local slope and interior mixing strength,
and it approaches this steady state diffusively over thousands
of years for typical abyssal parameters (MacCready and Rhines
1991; Thompson and Johnson 1996). The inference that the lo-
cal response dictates the net transport of the global circulation
fails to consider that the coupling goes both ways. In Peterson
and Callies (2022, hereafter PC22), we took a step toward ac-
counting for the large-scale context in the local response to
mixing. In the absence of along-slope variations, the vertically
integrated cross-slope transport should vanish to satisfy volume
conservation. The effects of this constraint are illustrated in
Fig. 1 for a buoyancy field generated by bottom-enhanced mix-
ing of fluid with initially constant stratification over a uniform
slope (Fig. 1a; see section 2 for details). The requirement that
all the upwelling in the bottom boundary layer (BL) be re-
turned in the interior above sets up a secondary cross-slope
circulation (Fig. 1b). To allow for a transport constraint, the
one-dimensional model must be modified to include a cross-
slope barotropic pressure gradient ­xP. As the cross-slope flow
returns in the interior, it is turned in the along-slope direction
by the Coriolis acceleration and put in geostrophic balance
with the cross-slope pressure gradient (Fig. 1c). The interior
along-slope flow is then enabled to spin up rapidly, rather than
being controlled by diffusion. This transport-constrained model
fully describes the spinup of mixing-generated flow in the ab-
sence of along-slope variations, capturing the flow spun-up by
bottom-enhanced mixing over an idealized ridge, for example
(Ruan and Callies 2020).

The PC22 model relies on symmetry in the along-slope di-
rection to provide enough constraints to solve for the local re-
sponse. This symmetry is broken if, for instance, meridional
variations in the planetary vorticity f are allowed. In general,
the local response is coupled to the basin-scale barotropic
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circulation. The net transport of the local response is con-
strained by the barotropic circulation, as in PC22 (though now
in both directions). At the same time, the curl of the bottom
stress due to the local response is itself a forcing in the baro-
tropic problem. Classical models of the barotropic circulation
(e.g., Stommel 1948; Munk 1950; Robinson 1970; Rattray
1982; Mertz and Wright 1992) use a simple form of the bottom
stress without considering buoyancy effects. In this work, we
use standard Ekman BL theory (e.g., Pedlosky 1979; Vallis
2017) to derive explicit expressions for the bottom stress in
terms of the barotropic transport, buoyancy field, and wind
stress. This allows us to leverage intuition from textbook baro-
tropic dynamics (e.g., Pedlosky 1979; Vallis 2017) to under-
stand the connection between the local response to mixing
and the basin-scale circulation.

To understand this coupling in a simple context, we study
the flow produced by a prescribed buoyancy field, neglecting
buoyancy advection. In particular, for a buoyancy field depen-
dent only on the depth of the fluid H (as in the purely mixing-
generated field in Fig. 1), the joint effect of baroclinicity and
relief (JEBAR) drops out of the barotropic vorticity equation.
Furthermore, we find that the bottom stress curl from Ekman
BL theory is not a leading-order term in the barotropic vortic-
ity budget in the interior of the basin. In the absence of a wind
stress curl, therefore, the leading-order barotropic flow in this
case must follow f/H contours. These contours tend to be open
and fairly longitudinal in the real ocean, but they can close
around large enough topographic features (e.g., Dewar 1998,
cf. Fig. 2). These two different topological states of the f/H
contours in an abyssal basin strongly alter the qualitative baro-
tropic dynamics. Flow along closed contours is unencumbered
in the inviscid equations of motion, allowing for a strong baro-
tropic response (e.g., Kawase 1993; Thompson 1995; Hallberg

and Rhines 1996). Open contours, on the other hand, intersect
the boundary on the equator or at vertical sidewalls, thereby
destroying the leading-order barotropic circulation. The first
case only slightly modifies the circulation compared to the lo-
cal response derived from the PC22 model, with the barotropic
flow now directed along f/H contours rather than simply along
slope. These are one and the same on an f plane, implying that
the PC22 model would still apply (provided that the assump-
tion of along-slope symmetry is still a good one). The second
case, however, would require a modification of the local theory
to include a constraint on both the cross- and along-slope
transports, as we will see below.

FIG. 1. Illustration of buoyancy field generated from bottom-enhanced diffusion in the vertical and resulting flow predicted from the
uniform slope model of PC22. For details of the dynamical equations and nondimensionalization, refer to section 2. (a) Vertical profiles of
stratification ­zb at a column depth of H 5 0.75 corresponding to the red line in (d), with time ranging from t 5 1023 (purple) to t 5 1022

(light blue) at a spacing of 1023. For the remainder of the paper, we freeze the buoyancy field at t 5 1022. (b) Cross-slope flow u and
(c) along-slope flow y inferred from the uniform slope model at t5 1022. Parameters are as in section 3: an Ekman number of « 5 23 1022,
turbulent viscosity of n 5 1, and nondimensional slope u 5 p/4 corresponding to the slope at the red line in (d). (d) Isopycnals (gray lines)
and horizontal buoyancy gradient­xb (colors) at t5 1022 in a bowl geometryH5 12 x2 2 y2 for 0# x# 1 and y5 0.

FIG. 2. Contours of f/H for the global ocean using bathymetry
data from Smith and Sandwell (1997, updated). The data are
smoothed by averaging over a 500-km-diameter circle at each
point. Contours that appear to intersect the boundary are actually
directed along coastlines before converging at the equator.

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 56432

Brought to you by Caltech Library | Unauthenticated | Downloaded 01/21/26 05:30 PM UTC



In section 2, we begin by introducing the planetary geo-
strophic (PG) formulation and an idealized abyssal basin that
will serve as our testbed for the remainder of the paper. We
then dive into the phenomenology of numerical solutions for
the PG circulation within this basin in section 3. The hydrog-
raphy is set by bottom-enhanced diffusion of buoyancy start-
ing from flat isopycnals, and the resulting flow is computed on
an f plane and two b planes, one with closed f/H contours and
one with open ones. In section 4, we use intuition from these
numerically derived circulations to motivate a theoretical de-
scription of the connection between the local baroclinic re-
sponse to mixing and the barotropic circulation. A discussion
of the significance of these results and key conclusions are
provided in sections 5 and 6, respectively.

2. A model problem for an abyssal basin

The goal of this study is to understand how the local re-
sponse to bottom-enhanced mixing interacts with the basin-
scale circulation. With this in mind, we consider an idealized,
closed basin to isolate this physics. We choose a bowl-shaped
domain defined by a parabolic depth function, which, in the
nondimensional coordinates defined below, sets a coastline
along the unit circle centered at the origin in the x–y plane
(Fig. 3). The symmetry about the origin is the main reason for
using this geometry as opposed to a rectangular basin more
often employed in idealized studies of the large-scale circulation
(e.g., Ito and Marshall 2008; Wolfe and Cessi 2011; Nikurashin
and Vallis 2011; Callies and Ferrari 2018; Jansen and Nadeau
2019). By varying b in f(y) 5 f0 1 by, we can examine the
dynamics under different f/H contour configurations, with
f/H5 (11 by)/(12 x2 2 y2) under the nondimensionalization
defined below. On an f plane (b 5 0), this yields axisymmetric
f/H contours (Fig. 3a), vastly simplifying the description of the
coupling between the local and global dynamics, as we will see
in the next section. As b is increased, the f/H contours shift
southward (Figs. 3b,c), breaking this symmetry and demanding

a more general treatment of the problem. Once b $ 1, the do-
main includes the equator, allowing these contours to open,1

perhaps more representative of most of the real ocean’s f/H
contours (Fig. 2). As anticipated in the introduction and ex-
plained in detail in the next section, the basin-scale dynamics
are qualitatively different for open versus closed contours. In
this way, the three cases considered here (b 5 0, 0.5, 1) cover
three key scenarios, allowing us to develop and test a general
theory for the connection between the local response to mix-
ing and the basinwide abyssal circulation.

a. Planetary geostrophic equations

To put the focus on the mixing-generated abyssal circula-
tion, we employ the PG approximation (e.g., Pedlosky 1979;
Vallis 2017). The PG scaling assumes large horizontal scales
and small Rossby numbers, removing the inertial terms in the
momentum equations. This filters out fast-time-scale dynamics
such as small-scale turbulence, internal waves, and baroclinic
eddies, but we interpret the PG flow as the residual flow after
a thickness-weighted average over these transients, with their
effects included as parameterized Eliassen–Palm and diapycnal
fluxes (e.g., Young 2012). As described in the next section,
however, we do not consider the effects of an eddy parame-
terization in this work. The dimensional PG equations in
Cartesian space (x, y, z) are

2fy 52
­p
­x

1
­

­z
n
­u
­z

( )
, (1)

fu 52
­p
­y

1
­

­z
n
­y

­z

( )
, (2)

FIG. 3. Contours of f/H in a circular midlatitude basin for H 5 1 2 x2 2 y2 and (a) f 5 1, (b) f 5 1 1 0.5y, and
(c) f5 11 y. The red line and circle in (a) indicate where the zonal slices in Fig. 4 and the profiles in Fig. 5 are taken,
respectively.

1 While, topologically, the contours still form closed loops,
they are “open” in the sense that they touch the boundary, where
H5 0, such that a frictionless barotropic along-contour circulation
cannot be sustained.
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where u 5 (u, y , w) is the velocity vector, b is the buoyancy,
and n and k are the turbulent viscosity and diffusivity, respec-
tively. We apply no-slip (u5 0) and no-flux (­zb5 0) boundary
conditions at the bottom that is located at z5 2H(x, y). At the
surface (z 5 0), we demand no normal flow (w 5 0) with a
wind stress forcing (n­zu⊥ 5 t) and a fixed uniform buoyancy
(b 5 0). In this formulation, we neglect horizontal diffusion
terms in the horizontal momentum equations [(1) and (2)].
For small-scale isotropic turbulence, this is consistent with
the assumption of a small aspect ratio. If the diffusion terms
are instead interpreted as parameterizing Eliassen–Palm
fluxes, then this assumption amounts to neglecting momentum
fluxes, which is conventionally thought to be justified (e.g.,
Gent and Mcwilliams 1990). These terms, as well as diffu-
sion in the hydrostatic equation [(3)], are, however, present
in the simulations for numerical stability (see section 3 and
appendix A).

These PG dynamics can be viewed separately as an evolu-
tion equation for buoyancy [(5)] and an inversion statement
for the flow [(1)–(4)]. For this study, we aim to understand the
inversion statement in isolation, leaving an analysis of the full
PG system for future work. To consider a flow field in the con-
text of abyssal mixing, we apply the inversion statement to a
buoyancy field generated by pure bottom-enhanced diffusion.
We solve

­b
­t

5
­

­z
k
­b
­z

( )
(6)

with an initial condition of flat isopycnals, b0 5 N2z, where N2

is the initial stratification. This setting is, of course, a major
simplification of the dynamics; in reality, the ocean is thought
to be in a nearly steady state, with advection in balance with
diffusion: u ? =b 5 ­z(k­zb) (Munk 1966). Instead, the buoy-
ancy field satisfying (6) simply mixes toward b 5 0, and the
flow derived from the inversion statement has no impact on
this evolution. As we will see in the following sections, how-
ever, the phenomenology of the PG inversion alone is rich
enough to warrant isolated study, and its understanding can be
used as a stepping stone for studying the complete dynamics.

b. Nondimensionalization and parameters

To isolate key parameters in the problem, we work with the
nondimensional PG equations for the remainder of the paper.
We define the characteristic scales for the horizontal and ver-
tical coordinates, velocities, Coriolis parameter, and mixing
coefficients such that

x, y ; L, z ; H0, u, y ; U0,

w ;
U0H0

L
, f ; f0, n ; n0, k ; k0: (7)

Unlike in quasigeostrophic theory, the PG equations do not
impose an explicit background stratification. For the simple
diffusion problem considered in (6), however, the initial condi-
tion sets a natural scaling for buoyancy, b ; N2H0. Finally, we
assume that the horizontal pressure gradient terms in (1) and
(2) scale with the Coriolis terms, that the buoyancy also scales
with the pressure scale divided by H0 from hydrostatic balance
in (3), and that time scales advectively:

p ; f0U0L, b ;
f0U0L
H0

5 N2H0, t ;
L
U0

: (8)

Applying these scales to (1)–(5) yields the following nondi-
mensional PG equations:

2 f̃ ỹ 52
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­ũ
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, (9)
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=̃ ? ~u 5 0; (12)
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5 «2

­
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k̃
­b̃
­z̃

( )
, (13)

where «2 5 n0/( f0H2
0) is the Ekman number, r 5N2H2

0/f
2
0L

2 is
the Burger number, and m 5 n0 /k0 is the turbulent Prandtl
number. The wind stress boundary condition at z̃ 5 0 is now
«2ñ­z̃~u⊥ 5 t̃ . We will work with nondimensional variables for
the remainder of the paper, dropping the ; decoration for
visual clarity.

Typical order-of-magnitude scales for an abyssal basin are

f0 ’ 1024 s21, H0 ’ 103 m, N ’ 1023 s21, L ’ 106 m,

(14)

yielding a Burger number of . ’ 1024. Over rough topography,
observations show enhanced turbulence associated with a turbu-
lent diffusivity on the order of k0 ’ 1023 m2 s21 in an abyssal
mixing layer roughly a few hundred meters above the bottom
(e.g., Waterhouse et al. 2014). Although the magnitude of the
turbulent viscosity is less clear, it is reasonable to assume that,
for weakly stratified abyssal waters, small-scale mixing of buoy-
ancy would occur on similar scales to the mixing of momentum,
implying that n0; k0, or m; 1 (e.g., Caulfield 2021). Parameter-
izing the Eliassen–Palm flux of submesoscale baroclinic eddies
generated in abyssal mixing layers would require m .. 1 (e.g.,
Wenegrat et al. 2018; Callies 2018), but we reserve a complete
study of how eddy restratification affects the basin-scale circula-
tion for future work. Taking n0 5 k0 5 1023 m2 s21 then puts «
at about 3 3 1023. To properly resolve the BL in the numerical
model described in the next section, we instead choose a magni-
fied value of « 5 2 3 1022, which thickens the BL and speeds
up diffusion but does not qualitatively change the solutions.
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For scales relevant to the basin-scale abyssal circulation, we
therefore make the following assumptions:

« ,, 1 and m. ; «2: (15)

The first of these assumptions motivates the use of BL theory
(section 4), as a typical ratio of the bottom Ekman layer thick-
ness d 5

��������
2n0/f0

√
to the column depth H0 is

��
2

√
«’ 2:83 1022

(this translates to a dimensional BL thickness of 28 m given
H0 5 1 km). According to the BL theory derived in Peterson
and Callies (2023, hereafter PC23), the cross-slope flow in the
PC22 model is of O(«) in the BL and O(«2) in the interior.
Along with the second scaling assumption in (15), this would
suggest that, in the absence of along-slope variations, advec-
tion of buoyancy in (13) is of higher order in « than diffusion.
While this may no longer be the case once along-slope varia-
tions are allowed, as we will show below, it further motivates
our simplification of the buoyancy equation to pure diffusion
[(6)] as a first look at the basin-scale dynamics. We therefore
solve the nondimensional buoyancy diffusion equation in the
vertical,

m.
­b
­t

5 «2
­

­z
k
­b
­z

( )
, (16)

with the initial condition b 5 z and boundary conditions
­zb 5 0 at z 5 2H and b 5 0 at z 5 0.

3. Numerical inversions for the three-dimensional
mixing-driven flow

Before developing a mathematical theory, in this section,
we build intuition for the phenomenology of the mixing-
generated circulation from numerical solutions of the idealized
problem described above. We use the finite element method to
integrate the diffusion equation [(16)] forward in time and
solve a form of the PG inversion [(9)–(12)] with an artificially
large aspect ratio for numerical stability (see appendix A). As
expected, on an f plane, the circulation in the bowl is axisym-
metric, allowing us to describe the local dynamics using the the-
ory from PC22 and PC23. The tilted isopycnals due to mixing
rapidly spin up a far-field flow that circumnavigates the basin.
On a b plane, the barotropic circulation shifts southward fol-
lowing f/H contours. For open contours, the barotropic trans-
port is nearly zero throughout the domain, constraining the
vertical structure of the flow and leading to stronger BL
transport.

a. Numerical approach

Despite the simplified form of the PG inversion [(9)–(12)]
compared to the full Boussinesq system, solving the problem
numerically in an arbitrary domain and with high resolution in
the bottom BL can still prove challenging. The geometrically
flexible finite element method is a natural choice for this
problem, but the small aspect ratio of the ocean destabilizes
standard techniques (e.g., Guillén-González and Rodrı́guez-
Galván 2015). To leverage the robustness of standard finite
element techniques without altering the qualitative behav-
ior of the circulation, we artificially increase the aspect ratio

a 5 H0/L to 1/2, reintroducing both diffusion in the vertical
momentum equation and horizontal diffusion of momen-
tum. This “aspect ratio trick” has been utilized in a number
of other models (e.g., Kuang et al. 2005; Garner et al. 2007;
Salmon 2009). We consider the effects of the approximation
in appendix A.

With horizontal diffusion terms included, the PG inversion is
equivalent to rotating Stokes flow, which may be solved effi-
ciently and accurately using textbook mixed finite element meth-
ods (e.g., Hughes 1987; Elman et al. 2014). We use P2–P1

elements (sometimes also called Taylor–Hood elements), where
velocity and pressure are represented by quadratic and linear
basis functions, respectively. For this method, the energy-
normed error scales quadratically with mesh resolution. To
resolve the BL scale, we discretize the domain using an un-
structured tetrahedral mesh with a uniform resolution of 1022

generated using Gmsh (Geuzaine and Remacle 2009). We use
the generalized minimum residual method (GMRES) to iter-
atively solve the resulting linear system for velocity and pres-
sure given the buoyancy field. For simplicity, we do not
specify a spatial structure in the nondimensional turbulent vis-
cosity, setting n 5 1 everywhere. The implementation in Julia
(Bezanson et al. 2017), which makes use of Gridap.jl for finite
elements (Badia and Verdugo 2020), Krylov.jl for iterative solv-
ers (Montoison and Orban 2023), and CUDA.jl for graphics
processing unit (GPU) support (Besard et al. 2019), is hosted
on GitHub (https://github.com/hgpeterson/nuPGCM).

As stated previously, we apply the PG inversion to a buoy-
ancy field generated by bottom-enhanced diffusive mixing in
the vertical [see (16)]. We choose a nondimensional turbulent
diffusivity profile that decays exponentially with height above
bottom,

k(x, y, z) 5 1022 1 exp 2
z 1 H(x, y)

0:1

[ ]
, (17)

qualitatively consistent with observations over rough topogra-
phy on the Mid-Atlantic Ridge (e.g., Polzin et al. 1997; Callies
2018). Equation (16) is then discretized using P2 finite elements
for buoyancy and integrated in time using the second-order
semi-implicit Crank–Nicolson method. Starting from flat iso-
pycnals b 5 z, a bottom mixing layer with ­zb , 1 instanta-
neously develops to satisfy the no-flux boundary condition
(Fig. 1a). This mixing layer grows diffusively}first rapidly near
the bottom, where k ; O(1), then more slowly once it reaches
the interior, where k ; O(1022)}eroding the stratification in the
column toward zero. When applied along the sloping bowl ba-
thymetry, this vertical mixing bends isopycnals into the slopes,
generating cross-slope buoyancy gradients (Fig. 1d). These
buoyancy gradients, as we will see in the following sections,
spin up a basin-scale circulation described by the PG inver-
sion. In the remainder of the paper, we analyze the PG in-
version for the buoyancy field at t 5 1022 (light-blue line in
Fig. 1a). Using the scales defined above, this corresponds to
a dimensional time of about t∗ 5 t/f0.’ 10days. This short
time reflects the artificially enhanced Ekman number, which
accelerates the rate of diffusion by a factor of ;100. We
now explore the phenomenology of the circulation set up by
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this buoyancy field for the three cases outlined in Fig. 3,
starting with the simplest case of an f plane.

b. Circulation on an f plane

On an f plane, by symmetry, the dynamics are equivalent
for any slice through the origin. As discussed in the introduc-
tion, this along-slope invariance allows us to apply the theory
built up in PC22 and PC23 to determine the local response.
In particular, this means that the vertically integrated zonal
velocity,

U ;
� 0

2H
u dz, (18)

along a zonal section through y 5 0 (red line in Fig. 3) must
vanish. Along this zonal section, the flow field exhibits the
BL upwelling and interior downwelling characteristic of
bottom-enhanced mixing (Figs. 4a,g). The transport constraint,
by the meridional momentum balance [(10)] and the along-
slope symmetry, implies that the meridional (along slope)
shear ­zy at the bottom must vanish. This, in turn, implies
weak near-bottom flow, such that the thermal wind shear in
the mixing layer leads to strong meridional flow in the inte-
rior (Fig. 4d). These dynamics are well described by the local
theory, as showcased in Fig. 5 for a particular profile taken at
x 5 0.5 and y 5 0 (red dot in Fig. 3). In section 4, this local
model will be described and generalized in detail, but for

now the transport-constrained one-dimensional model from
PC22 is a sufficient mental picture.

As we make more explicit in section 4, the circulation in
general must satisfy a barotropic vorticity equation. For the
symmetric buoyancy field considered here, and in the absence
of a wind stress, this implies free leading-order barotropic
flow along closed f/H contours. On an f plane, this simply
means that fluid columns must remain at a constant depth as
they circumnavigate the basin. Defining a barotropic stream-
functionC, such that

2
­C

­y
5 U and

­C

­x
5 V, (19)

where U is as defined in (18) and V ;
	0
2H

y dz, this implies
thatC 5 C(H) (Fig. 6). The strength of this along-slope baro-
tropic circulation is set by the amount of thermal wind shear
over the mixing layer (see section 4 and appendix C for de-
tails). Specifically, as we will see in (42), the magnitude ofC is
linearly proportional to the thickness of the mixing layer, the
strength of the cross-slope buoyancy gradient within it, and
the depth of the fluid column.

c. Circulation on a b plane

On a b plane, the f/H contours shift southward, breaking the
axial symmetry that was present on the f plane and there-
fore invalidating the model for the local response based on

FIG. 4. Zonal sections at y 5 0 of velocity components (colors) and isopycnals (gray lines) at t 5 1022 for (left) b 5 0, (center) b 5 0.5,
and (right) b 5 1. The velocity components are organized by row: (top) zonal flow u, (middle) meridional flow y , and (bottom) vertical
flow w. The red line in (a) indicates the location of profiles in Fig. 5.
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along-slope symmetry. We consider two cases: b 5 0.5 and
b 5 1, with the former having closed f/H contours and the
latter having open contours (Figs. 3b,c). As alluded to in the
introduction, these two cases lead to dramatically different
local- and basin-scale responses to the mixing-generated
buoyancy field.

For closed f/H contours (b 5 0.5), the magnitude of the
barotropic circulation is comparable to that of the f-plane
case (Fig. 6b). The streamfunction is very nearly a function
of f/H, with a slight perturbation toward the western side of
the basin. Looking again at a zonal section through y5 0, the
interior meridional flow is similar to the f-plane case, with a
slight barotropic shift toward zero in the interior (Fig. 4e).
This is especially clear in the vertical profile at x 5 0.5 and
y 5 0 (Fig. 5b). Because the f/H contours are no longer

meridional along this zonal section, the along-contour trans-
port constraint allows for a substantially enhanced zonal
(cross isobath) flow (Figs. 4b and 5a). The zonal circulation
in the interior of this section can best be understood by con-
sidering the stretching and squashing of fluid columns to con-
serve vorticity. Since f increases with y, fluid columns moving
northward on the eastern side of the basin must stretch by
moving toward deeper waters to the west to keep f/H constant.
This explains the westward and downwelling interior flow on
this side of the basin (Figs. 4b,h). On the other hand, fluid col-
umns moving southward on the western side of the basin must
squash by moving toward shallower waters, leading to west-
ward and upwelling interior flow. More precisely, the interior
vertical flow (Fig. 5c) is, to leading order, consistent with fric-
tionless vorticity conservation, f­zw5 by .

FIG. 5. Vertical profiles of (a) zonal u, (b) meridional y , and (c) vertical w flow components
from the 3D model inversion (solid) for b 5 0, 0.5, and 1 at x5 0.5, y5 0, and t5 1022. The sec-
ond-order accurate local models for U 5 0 and U 5 V 5 0 (modified for an aspect ratio of 1/2;
see appendixes B and C) are shown in dashed and dashed–dotted lines, respectively.

FIG. 6. Barotropic streamfunctionC (colors and black contours) at t5 1022 for (a) b 5 0, (b) b 5 0.5, and (c) b 5 1.
Negative values imply counterclockwise flow. For reference, the f/H contours from Fig. 3 are overlaid in green.
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The circulation completely changes once f/H contours
open. As before, the leading-order barotropic flow is directed
along f/H contours, but this time these contours encounter
the boundary, where the flow must be zero. The magnitude
of the barotropic circulation is, therefore, considerably re-
duced (Fig. 6c). The near-zero transport throughout the do-
main provides a constraint that decouples the local response
from the basinwide circulation. Unlike the model for the lo-
cal response in the f-plane case, here both U and V must van-
ish at leading order. This model for the local response,
described in section 4 and appendixes B and C, captures the
qualitative vertical structure of the flow at x 5 0.5 and y 5 0,
with quantitative errors to be expected given that the net
transport is not exactly zero in the full inversion (Fig. 5). This
constraint on the net transport has important implications for
the vertical structure of the circulation. With the thermal
wind shear unchanged, the meridional flow in the interior
must shift to satisfy V 5 0 (Figs. 4f and 5b). This generates a
larger shear near the bottom, thereby enhancing the upslope
BL transport (Figs. 4c,i and 5a,c). If buoyancy advection
were allowed, this stronger BL upwelling than the f-plane
case would be more efficient at restratifying the mixing layer,
as we discuss further in section 5. To compensate for this BL
transport and ensure that that U ’ 0, the zonal flow in the in-
terior is weakly westward in balance with a barotropic merid-
ional pressure gradient.

4. Theory for the flow inversion

The phenomenology exhibited in the previous section
shows that, for a fixed buoyancy field, the circulation result-
ing from the PG inversion varies substantially depending on
the underlying f/H contours. For open contours, the baro-
tropic circulation vanishes at leading order, rendering the
leading-order local response independent of any global con-
text. For closed contours, on the other hand, a leading-order
along-contour barotropic flow develops. This transport con-
strains the local response, whose bottom stress curl then
provides a sink of barotropic vorticity so that, in general,
the two problems must be solved simultaneously. For the
f-plane case, however, the along-slope symmetry provided
enough of a constraint to allow us to describe the local re-
sponse independently with the model derived in PC22. In
this section, we describe the mathematical formalism of these
results, clarifying how the local and barotropic responses
are coupled and deriving asymptotically accurate analytical
expressions.

a. Barotropic vorticity conservation

Turbulent mixing of buoyancy in the abyss generates a lo-
cal flow response that must reckon with the basinwide circu-
lation. The barotropic circulation may be described by the
barotropic vorticity equation, derived by integrating the
horizontal momentum equations [(9) and (10)] over the wa-
ter column and then cross differentiating (e.g., Pedlosky
1979; Vallis 2017):

2J
f
H

, C

( )
52J

1
H

, g

( )
1 z ? = 3

t

H

( )
2 «2z ? = 3

n

H
­u

­z

∣∣∣∣∣
2H

( )
,

(20)

where J(A, B) 5 ­xA­yB 2 ­yA­xB is the Jacobian operator.
For a closed simply connected domain like the bowl consid-
ered in this study, the boundary condition is C 5 0. The first
term on the right-hand side depends on both the topography
and the three-dimensional structure of the buoyancy field
through g 52

	0
2H

zb dz and is therefore often called the
JEBAR term (Sarkisyan and Ivanov 1971; Schulman 1975). For
our simple diffusion case, g 5 g(H), so that JEBAR is zero.

Equation (20) can be interpreted as a conservation equation
for the “tracer” C advected by the “flow” f/H and with “sources”
and “sinks” on the right-hand side (e.g., Welander 1968; Salmon
1998; Vallis 2017). This tracer analogy helps explain the qualitative
difference between the open- and closed-contour inversions
(Fig. 6). For closed f/H contours, the streamfunction can flow
along a closed loop, gaining “concentration” from the source
terms along the way. This is how the f plane and b 5 0.5 simu-
lations could maintain such strong barotropic circulations (e.g.,
Hallberg and Rhines 1996). For b 5 1, however, the contours
open, and any concentration acquired while “flowing” in the
interior will be lost at the boundary. In the inversions shown
above, the only source term is the bottom stress curl, which is
itself a part of the solution. For closed contours, this fric-
tional term can become large outside a lateral boundary layer,
whereas open contours produce lateral (western) boundary
layers with friction remaining small in the interior.

A closed description requires an expression for the bottom
stress curl term in (20), where the barotropic circulation explic-
itly couples to the local response. In the classic Stommel (1948)
model, the bottom stress is simply taken to be proportional to
the vertically integrated transport; taking its curl then yields a
term proportional to the horizontal Laplacian of C, adding a
lateral diffusion term to the tracer analogy. More physically,
Ekman theory should be applied to the bottom boundary layer,
such that the bottom stress depends on the near-bottom geo-
strophic flow. Because the near-bottom geostrophic flow de-
pends on both the barotropic circulation and the baroclinic
shear, this couples the barotropic problem to the local response
to mixing. This theory is developed over the next two sections.

b. The local response to mixing

The local response can be determined by solving the fric-
tional thermal wind relations, which arise from differentiating
the momentum equations [(9) and (10)] in z and substituting
hydrostatic balance [(11)]:

2f
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­z
52

­b
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1 «2
­2

­z2
n
­u
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( )
, (21)

f
­u
­z

52
­b
­y

1 «2
­2

­z2
n
­y

­z

( )
: (22)

All variables, including f and n , remain nondimensional.
Given the horizontal buoyancy gradients, (21) and (22) define a
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set of two coupled second-order ordinary differential equations
in z for the shear of the horizontal flow (­zu, ­zy). The first set
of boundary conditions is due to the wind stress («2n­zu 5 tx

and «2n­zy 5 ty at z 5 0), while the second set arises from the
barotropic transport constraint:

2

�0

2H
z
­u
­z

dz 5 U and 2

�0

2H
z
­y

­z
dz 5 V, (23)

coupling the problem to the barotropic vorticity equation
[(20)]. Since u 5 0 at z 5 2H, the horizontal flow can easily
be determined from the shear by integrating upward:
u(z)5 	z

2H
­zu(z′)dz′ and y(z)5 	z

2H
­zy(z′)dz′. The vertical

flow can be determined by cross differentiating the horizontal
momentum equations [(9) and (10)] and applying continuity
[(12)], which yields the frictional vorticity balance,

by 5 f
­w
­z

1 «2
­

­z
n
­z

­z

( )
, (24)

where z 5­xy 2­yu is the relative vorticity. From this relation,
it is clear that the local interior vertical velocity reflects the
stretching or squashing needed to conserve potential vorticity
of the fluid column as it moves across a meridional planetary
vorticity gradient. Near the boundaries, where the friction term
dominates, horizontal variations in the local response yield
Ekman pumping and suction.

Solutions to (21) and (22) are well understood from standard
Ekman theory (e.g., Ekman 1905; Pedlosky 1979; Vallis 2017).
For a purely zonal transport with no horizontal buoyancy gra-
dients, the flow is constant in the interior with u 5 U/H and
y 5 0 and follows a classic Ekman spiral to zero in the bottom
BL (Fig. 7a). For f . 0, the positive zonal transport spirals

counterclockwise, generating a small, positive meridional trans-
port in the BL. Likewise, for a positive meridional transport, the
constant interior flow u5 0 and y 5 V/H spirals near the bottom
such that a small, negative zonal BL transport is created (Fig. 7b).
Finally, when no net transport is allowed but a buoyancy gradient
in x is present due to turbulent mixing on a slope, the shear in the
meridional flow satisfies thermal wind in the interior (Fig. 7c).
The constraint that V5 0 then implies a nonzero interior flow at
the top of the bottom BL, leading to an Ekman spiral with posi-
tive zonal transport in the BL.

These hypothetical profiles already help to explain the
qualitative differences between the vertical structure of the
flow from the inversions shown in the previous section. By lin-
earity of the baroclinic equations [(21) and (22)], the full flow
within any vertical column in the domain may be thought of as
a linear combination of the solutions in Fig. 7. In other words,
if we call (uU, yU) and (uV, yV) the local responses for no hori-
zontal buoyancy gradients and purely zonal (Fig. 7a) or meridi-
onal (Fig. 7b) transport, respectively, and (ub, yb) the baroclinic
solution with no net transport (e.g., Fig. 7c for x 5 0.5, y 5 0,
and t 5 1022 from the bowl simulation), then the full solution
may be written as

u 5 UuU 1 VuV 1 ub, (25)

y 5 UyU 1 VyV 1 yb: (26)

Given the barotropic streamfunction from Fig. 6 and the
one-dimensional solutions uU, yU, uV, yV, ub, and yb shown in
Fig. 7, we can infer the local flow profiles for each of the three
bowl simulations. These descriptions should be compared with
the actual flow profiles at this location and time shown in
Fig. 5. For the case with open f/H contours (b 5 1), the

FIG. 7. Solutions to the frictional thermal wind equations [(21) and (22)] for cases with
(a) zonal transport only, (b) meridional transport only, and (c) no transport with a zonal buoy-
ancy gradient taken from the bowl simulation at x 5 0.5, y 5 0, and t 5 1022 (see Fig. 1). These
solutions are labeled with the subscripts U, V, and b, respectively, as in (25) and (26). Second-
order accurate BL theory solutions (see appendix B) are shown in black dashed lines. Parame-
ters are as in the full inversion at x 5 0.5 and y 5 0 (« 5 2 3 1022, f 5 1, n 5 1, H 5 0.75) with
horizontal viscous terms ignored.
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barotropic transport is negligible throughout the domain
(Fig. 6c), so the profiles mostly resemble ub and yb alone. For
closed contours, on the other hand, the barotropic transport is
large (Figs. 6a,b), leading to modifications due to the transport
responses uU, yU, etc. On the f plane, for example, U 5 0 and V
is large and positive at this point. Since VuV , 0 in the BL and
VyV . 0 in the interior, this leads to a reduction in the upslope
BL transport and a strong along-slope flow in the interior. For
b 5 0.5, the meridional transport is still large and positive while
the zonal transport is slightly negative. Thus, the contribution
fromUuU leads to a westward barotropic flow in the interior.

This formulation of the local problem is generally applicable,
with the integral conditions [(23)] describing exactly how the
local response is constrained by the barotropic problem [(20)].
Similarly, when along-slope symmetry is present, such as in the
f-plane case in the bowl geometry, the barotropic problem can
be sufficiently simplified to enable an explicit calculation of the
local response. Taking x and y to be the local cross- and along-
slope directions, neglecting along-slope variations in the baro-
tropic vorticity equation [(20)] implies

­

­x
n

H
­y

­z

∣∣∣∣∣
2H

( )
5 0: (27)

Integrating in x from the center of the domain, where the flow
must vanish by symmetry, this reduces to the requirement that
the along-slope shear vanishes everywhere along the bottom:

­y

­z
5 0 at y 5 0, z 52H: (28)

The same conclusion can be reached by integrating the
y-momentum equation from z5 2H to z5 0, assuming­yp5 0
and U 5 0 (PC22). The constraint in (28) then replaces the
along-slope integral boundary condition in (23), and the cross-
slope transport is set to zero by the symmetry described above.
This local model is mathematically equivalent to the stream-
function formulation of the dynamics in the x–z plane from
PC22, but it more naturally generalizes to the three-dimensional
problem. If one assumes a uniform bottom slope u, the hori-
zontal buoyancy gradient becomes ­xb 5 2­zb tanu, and the
vertical flow is simply w 5 u tanu, as in the standard one-
dimensional models (see appendixes A and B).

c. Boundary layer theory

The barotropic and local problems outlined in the previous
two sections form a complete description of the PG inversion.
The two must be solved together, with the solution to the lo-
cal problem feeding into the bottom-stress-curl sink term in
the barotropic vorticity equation [(20)] and the barotropic so-
lution appearing in the integral constraint [(23)] of the local
inversion [(21) and (22)]. In this section, we use standard Ek-
man BL theory (e.g., Pedlosky 1979; Vallis 2017) to arrive at
an analytical expression for the bottom stress, allowing us to
explicitly describe how the local response couples to the ba-
sinwide dynamics. In the following, we describe the salient re-
sults of the BL theory; we leave the details in appendix B.

We split the flow into an interior contribution uI, which
varies slowly in z, and bottom and surface BL corrections uB

and uS, respectively, which ensure boundary conditions are
satisfied and have appreciable magnitude in thin BLs only.
The interior solution is then, toO(«), in thermal wind balance:

f
­y I
­z

5
­b
­x

and f
­uI
­z

52
­b
­y

: (29)

In the absence of a buoyancy gradient, the flow in the interior
is constant, consistent with both profiles in Figs. 7a and 7b
and u in Fig. 7c (where­yb5 0). To satisfy the no-flow bound-
ary condition at the bottom, this flow is brought to zero by
friction in a classic Ekman spiral, with coefficients set by the (yet
to be determined) interior flow at the top of the bottom BL:

uB 52e2qz (uI |2H cosqz 1 y I |2H sinqz), (30)

yB 52e2qz (y I |2H cosqz 2 uI |2H sinqz): (31)

The solution is written in terms of the stretched vertical coor-
dinate z 5 (z1H)/«, and q21 5

�����������
2n |2H/f

√
is the bottom BL

thickness in this coordinate. With b 5 0 at z 5 0, the shear of
the interior velocities [(29)] is zero at the surface, automati-
cally satisfying the surface boundary condition for no wind
stress. If a nonzero wind stress is allowed, an O(«21) Ekman
spiral BL correction at the surface uS must be present as well.

The Ekman spiral in the bottom BL [(30) and (31)] gener-
ates considerable shear near the bottom, providing a frictional
sink of barotropic vorticity. To derive an explicit formula for
the curl of this bottom stress, we must first determine the inte-
rior flow at the top of the BL uI|2H and y I|2H. This can be
done by considering the contributions of the interior and BL
components to the vertically integrated transport:

U 5 UI 1 US 1 «UB and V 5 VI 1 VS 1 «VB: (32)

Due to the thinness of the surface and bottom BLs, their inte-
grals pick up a factor of «, but since the surface BL correction
is of O(«21), its integral contribution is of O(1). Neglecting
the O(«) contributions from the bottom BL in (32) and solv-
ing for the interior flow at the top of the bottom BL yields
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With these constants determined, it is now possible to write
down the bottom stress due to the BL correction [(30) and (31)]:
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(36)

This O(«) contribution is the dominant term in the full stress.
Equations (35) and (36) explicitly separate the contributions
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to the bottom stress in terms of three physical sources: 1) the
barotropic transports, 2) the full-column buoyancy gradients,
and 3) the wind stress. The latter two terms are external forc-
ings to the problem, while the barotropic transports couple
the local flow to the basin-scale circulation.

Plugging these analytical expressions for the bottom stress
into the barotropic vorticity equation [(20)] yields the follow-
ing closed equation for the barotropic streamfunction:

«=⊥ ?
r
H

=⊥C

( )
2 J

f 1 «r
H

, C

( )
52J

1
H

, g

( )
1 z ? = 3

t

H

( )

2 «B 2 «T , (37)

where =⊥ 5 (­x,­y) is the horizontal gradient operator,
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is the curl of the bottom stress due to baroclinicity, and
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( )
(39)

is the curl of wind-induced bottom stress. Because the first
terms in the equations for the bottom stresses [(35) and
(36)] are proportional to U and V, a Laplacian term appears
just as in the Stommel theory, with the diffusion coefficient
r/H 5 n |2Hq/H

2 dependent on the thickness of the bottom
BL. In contrast with the Stommel model, there is also a
cross term «J(r/H, C), applying an O(«) modification to the
“advection” term J(f/H, C) (e.g., Rattray 1982). The more im-
portant changes come from the other two terms in the bottom
stresses: The term due to the baroclinic buoyancy response
and the term due to the bottom return flow from the wind
stress forcing contributeO(«) sources toC.

Making use of the fact that « ,, 1, we can further describe
the physics of the barotropic circulation in terms of its expan-
sion in «, defining C 5 C0 1 «C1 1 · · ·. The leading-order
balance in (37) is then simply
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5 0, (40)

where the last equality is true in our inversions with no wind
stress and g 5 g(H). This confirms our intuition that the
leading-order barotropic streamfunction is constant along f/H
contours: C0 5 C0(f/H) (e.g., Rattray 1982; Mertz and Wright
1992). The source terms due to the curl of the bottom stress
come into play atO(«):
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For open contours, C0(f/H) must be identically zero due to
the boundary condition C0 5 0 at the coast, explaining the
destruction of the leading-order streamfunction for the b 5 1
inversion (Fig. 6c). The strength of the circulation is then set at

the next order by B and T , with the addition of a lateral bound-
ary layer to satisfy the boundary condition, as in the standard
Stommel theory (Veronis 1966). The theoretical profiles in
Fig. 5 simply assume U5 V5 0, which is true to leading order
and fully decouples the local response from the barotropic cir-
culation. For closed contours, C0(f/H) is nonzero and can, in
general, be determined by integrating (41) along f/H contours
to remove the C1 term. This leads to a second-order ODE for
C0(f/H) with a forcing due to the integral of B1 T on the
RHS.

When along-slope symmetry is present, as in our f-plane
case, the along-slope barotropic transport can be directly com-
puted from the model for the local response described above
and in appendix C. Applying the constraints ­yb 5 0, U 5 0,
and­zy |2H 5 0 and solving for V yields,
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For a full derivation out to O(«2), see appendix C. Physically,
the leading-order term represents thermal wind shear inte-
grated over the column. In our simulations, this shear is only
nonnegligible over the mixing layer, suggesting that

C0(0) ’2
hDxb
f

�1

0
Hdx 52

2hDxb
3f

, (43)

where Dxb is the average horizontal buoyancy gradient over
the mixing layer and h is the scale height of k, taken to be 0.1
in (17). With f 5 1 and setting Dxb 5 1 (cf. Fig. 1d), (43)
would imply C0 ’ 27 3 1022 at x 5 0. In this case, therefore,
the leading-order contribution to the streamfunction is much
smaller than unity and not much larger than « 5 2 3 1022,
implying that the first-order correction in (42) plays an impor-
tant quantitative role (Fig. 8). This correction is due to a baro-
tropic O(«) interior flow that sets up a bottom Ekman layer
whose along-slope shear must be constrained to zero at the
bottom. Similarly, to achieve quantitative agreement in Fig. 5,
the profiles for the local responses are computed out to O(«2)
(see appendixes B and C).

5. Discussion

The buoyancy distribution of the abyssal ocean in steady
state is set by a balance between diapycnal advection and dia-
pycnal mixing (Munk 1966). The advecting flow is itself a func-
tion of this buoyancy field, and, in this work, we chose to focus
our attention on this dependence in the context of the PG ap-
proximation. In the “strong diffusion regime,” where m. ; «2,
this yields a full description of the circulation: The buoyancy
evolves according to simple diffusion, and the flow passively
varies according to the PG inversion of this field. Restricting
ourselves to this very basic dynamics allowed us to make pro-
gress in understanding the generalizations of previous theories
for the local response to mixing. It is worth noting that, assum-
ing one somehow knew the steady-state buoyancy field from
the advection–diffusion problem, the analysis presented here
would apply to the steady-state flow field. Without a complete
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understanding of how this flow is determined, however, it
would be impossible to know how the buoyancy field arrived at
that steady state to begin with. This paper therefore represents
one important step in developing a full theory for the abyssal
circulation, with the next being to consider the feedback of this
flow onto the buoyancy field.

Some speculation for how advection could shape the buoy-
ancy field, given the flow inversions presented here, is possible.
For instance, the enhanced BL upwelling for open f/H contours
(Figs. 4i and 5c) could encounter a negative feedback once it is
allowed to interact with the hydrography. This transport of
dense water up the slope would work to restratify the abyssal
mixing layer even without a parameterization of restratification
due to baroclinic eddies (Wenegrat et al. 2018; Callies 2018).
This flattening of isopycnals will, in turn, reduce the thermal
wind shear above the BL, weakening the BL transport. This
negative feedback on the BL transport could be particularly
relevant given the ubiquity of open f/H contours in the real
ocean (Fig. 2). The larger interior vertical velocities for b-plane
inversions (Figs. 4h,i and 5c) would also modify the interior
stratification with advection allowed. The pattern of downwel-
ling on the eastern side and upwelling on the western side of
the basin for the zonal section at y 5 0 would work to generate
a positive zonal buoyancy gradient and hence poleward shear in
the interior meridional flow. This flow must, in turn, conserve
vorticity, perturbing the vertical velocities and likely generating
westward-propagating long Rossby waves. These Rossby waves
would then allow for communication between the eastern and
western sides of the basin, playing an important role in setting
up a western boundary current in the early stages of spinup
(e.g., Pedlosky 1965; Rhines 1975).

Ultimately, the goal should be to describe these dynamics
in terms of BL–interior communication to better understand
the role that bottom-enhanced mixing plays in shaping the
abyssal circulation. The BL theory in PC23 builds a founda-
tion for this theory by considering the case with along-slope
symmetry. This theory illustrates how upslope BL transport

supplies a downward flux of buoyancy that the interior feels
as an effective bottom boundary condition. As the cross-slope
stratification at the top of the BL evolves, so does the BL
transport, providing an avenue for exchange. This description
should carry over to the more general case, with the local re-
sponse now coupled to the barotropic vorticity equation as
discussed here. While the interior dynamics may evolve on a
faster time scale, supporting Rossby waves, the BLs should re-
main quasi steady, again setting an effective bottom boundary
condition on the interior.

In this paper, we only show numerical inversions for the sim-
ple case of no wind stress and a symmetric buoyancy field in a
simple basin geometry. The theory is general, however, allow-
ing us to reason about how the circulation would change under
different scenarios without explicitly computing the inversion.
In general, the wind stress curl and JEBAR terms provide
leading-order sources/sinks of barotropic vorticity in (40). If
these terms are nonzero, a leading-order barotropic circulation
could be supported even in the open f/H contour case. The
wind-forced circulation, however, should be largely confined to
the thermocline, reducing its impact on the abyssal circulation,
at least in subtropical regions (Luyten et al. 1983). We put our
focus on the abyssal circulation powered by bottom-enhanced
mixing, but its interplay with the wind-forced circulation, espe-
cially in subpolar regions, could be studied using the same
framework.

As a final caveat, we note that the analytical theory pre-
sented in the main text of this work assumes no horizontal dif-
fusion and no diffusion in the vertical momentum equation,
while the numerical solutions to the PG equations do include
these terms for stability. Over a uniform slope, these terms
contribute a factor of (1 1 a2 tan2u)3/4 modification to the BL
scale q21 (appendixes A and C). While this leads to a slight
quantitative modification to the flow, the qualitative physics
remain unchanged. This correction is included in the BL solu-
tions presented in Figs. 5 and 8 to more directly compare with
the three-dimensional model, although slight errors are still
expected due to curvature in the slope. The BL solutions in
Fig. 7 do not require this modification, as there the local re-
sponse is computed directly from (21) and (22) without these
diffusion terms.

6. Conclusions

Our understanding of how observed bottom-enhanced mix-
ing shapes the global abyssal ocean circulation has been guided
by theories focused on the local dynamics above slopes (e.g.,
Phillips et al. 1986; McDougall 1989; Garrett 1991; Dell and
Pratt 2015; Holmes et al. 2018; Callies and Ferrari 2018; Drake
et al. 2020). In this work, we explored how this local response
couples to the basin-scale barotropic circulation for a fixed
buoyancy field under the PG approximation. While barotropic
dynamics have been well understood since Welander (1968),
their connection to the baroclinic response to mixing over sloping
topography has not been fully appreciated.We found that the bot-
tom stress curl of the local response forces the barotropic vorticity
through three primary mechanisms: shear due to barotropic
interior currents, baroclinicity of the buoyancy field, and

FIG. 8. Comparison of the barotropic streamfunction C at
t 5 1022 and y 5 0 between the 3D f-plane inversion and the local
model assuming along-slope symmetry [(42)]. The modifications to
the local model described in appendix C are applied to partially ac-
count for the added viscous terms in the 3D model.
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bottom return flow due to the wind stress. These terms drop
out at leading order away from the coastline, yielding the stan-
dard balance between “advection” of C along f/H contours
and “sources” from JEBAR and the wind stress curl (e.g.,
Rattray 1982; Mertz and Wright 1992).

To focus on how the baroclinicity of the local response shapes
the barotropic circulation, we considered the flow field resulting
from zero wind stress and a buoyancy field that is a function
of depth. The sources in the leading-order barotropic vorticity
equations vanish in this case, implying that C0 must follow f/H
contours. When these contours are closed, such as over large
topographic features (e.g., the Argentine Basin; Fig. 2), a leading-
order along-contour transport develops, with its magnitude set by
the thermal wind shear over the mixing layer. On an f plane, this
corresponds to an along-slope transport, and, for axisymmetric ba-
thymetry, the local response is completely determined by the one-
dimensional model of PC22. For open f/H contours, in contrast,
C0 must be zero, decoupling the leading-order local response
from the large-scale context.

This second case is more representative of the f/H contours
in real ocean basins (Fig. 2) and has important implications for
the influence of the BL on the interior circulation. Constrain-
ing the net transport of the local response to zero enhances
the along-slope flow at the top of the BL, promoting the BL
upwelling from O(«) to O(1) compared to the response in the
case of along-slope symmetry. Once allowed to advect buoy-
ancy, this BL flow would more efficiently transport dense wa-
ter up the slope, supplying a stronger effective buoyancy flux
at the bottom felt by the interior (cf. PC23). Some combina-
tion of this enhanced BL upwelling and the transport due to
submesoscale baroclinic eddies (Wenegrat et al. 2018; Callies
2018) is responsible for maintaining the stratification in the
abyss.
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APPENDIX A

The PG Inversion with Nonzero Aspect Ratio

The nondimensional PG inversion, as it is presented in (9)–
(12) in the main text, implicitly assumes a small aspect ratio
and, hence, does not contain any viscous horizontal momen-
tum transfer. This is an excellent assumption for the ocean,
since, using the scales from section 2b, the aspect ratio is
a ; H0/L ; 1023. For numerical stability, however, we found
it necessary to reintroduce these terms by artificially inflating

the aspect ratio. This comes with the cost of quantitative er-
rors, but the qualitative dynamics remain the same, as demon-
strated in this appendix.

The PG inversion that our numerical model ultimately
solves reads

2fy 52
­p
­x

1 «2 a2­
2u
­x2

1 a2­
2u
­y2

1
­2u
­z2

( )
, (A1)

fu 52
­p
­y

1 «2 a2­
2y

­x2
1 a2­

2y

­y2
1

­2y

­z2

( )
, (A2)

­p
­z

5 b 1 «2a2 a2­
2w
­x2

1 a2­
2w
­y2

1
­2w
­z2

( )
, (A3)

= ? u 5 0: (A4)

For a Þ 0, horizontal diffusion terms are retained in the momen-
tum equations. Crucially, hydrostatic balance is no longer exactly
satisfied in (A3). This allows us to use classical finite-element
techniques for Stokes flow, as described in the main text. For
simplicity, we have set n 5 1, as used throughout the paper.

To quantify the impact that artificially increasing a has on
the inversions considered here, we consider the simple case
of a uniform bottom slope in the x direction at a nondimen-
sional angle u with the horizontal. The dynamics in this case
are fully described by a 1D model in the slope-following ver-
tical direction, with the nonzero component of horizontal dif-
fusive fluxes in this direction leading to modifications to the
a 5 0 PC22 model. This yields a reasonable first approxima-
tion of aspect ratio effects given the skill of 1D theory in
more general settings, as shown in the main text. To derive
the 1D model, we define the transformation from Cartesian
to slope-following coordinates as

j 5 x, h 5 y, z 5 z 2 x tanu (A5)

(see PC22, Fig. A1, for a sketch).A1 The contravariant velocity
components under this coordinate transformation are then

uj 5 u, uh 5 y , uz 5 w 2 u tanu, (A6)

and the partial derivatives transform as

­

­x
5

­

­j
2 tanu

­

­z
,

­

­y
5

­

­h
,

­

­z
5

­

­z
: (A7)

Neglecting variations in planes parallel to the slope (the j

and h directions) while still allowing for a cross-slope baro-
tropic pressure gradient ­xP, the PG inversion with nonzero
aspect ratio becomes

2fuh 52
­P
­x

1 b′ tanu 1 G2«2
­

­z
n
­uj

­z

( )
, (A8)

A1 The symbol z is here used as a vertical coordinate, not as the
relative vorticity, as in the main text.
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fuj 5 G«2
­

­z
n
­uh

­z

( )
, (A9)

�0

2H
uj dz 5 0, (A10)

where b′ is the buoyancy perturbation from a background
b 5 z. Equations (A8)–(A10) are derived from the more gen-
eral form of (A1)–(A4) allowing for variations in n , and they
form the generalization of the (nondimensional) transport-
constrained 1D inversion for a Þ 0. The only differences to
the a 5 0 model are the factors of G 5 1 1 a2 tan2u multiply-
ing the flux terms. Physically, these factors come from the pro-
jection of the horizontal fluxes in the direction of the slope,
with an extra factor of G in the j-momentum equation due to
the nonhydrostatic part of­zp.

Even for a 5 1/2, three orders of magnitude larger than
that of the abyssal ocean, the 1D model solutions at u 5 p/4
(corresponding to x 5 0.5 and y 5 0 in the bowl, as in Fig. 5)
are qualitatively similar to the a 5 0 case (Fig. A1). As ex-
pected, the factors of G 5 1.25 on the friction terms lead to
slight thickening of the BL (Fig. A1a). From BL theory, the
new bottom Ekman layer thickness is d 5 G4/3

��
2

√
« (see

appendix C). Somewhat more surprisingly, the interior along-
slope flow is reduced for the a 5 1/2 case (Fig. A1b). This
can be explained with BL theory, where we find that the as-
ymptotic expansion of ­xP ; fy |0 in « is

­P
­x

5 b′|2H tanu 2 «G4/3

��������
2n |2H

f

√
tanu 1 O(«2): (A11)

The first term comes from the transport constraint, which forces
the interior along-slope flow to be zero at the top of the
BL. The O(«) correction comes from the fact that the shear
in the O(1) interior along-slope flow must balance the shear
from the O(«) BL correction. Since G4/3 ’ 1.3 for a 5 1/2, the
change in ­xP between the two cases is about 1022, consistent
with the change in y |0 in Fig. A1.

APPENDIX B

BL Solution to the Frictional Thermal Wind Equations

This appendix contains the full derivation of the BL theory
solution to the local inversion [(21) and (22)] described in
section 4. As described in the main text, we split the flow
into interior, surface BL, and bottom BL components uI, uS,
and uB, respectively. We further expand these components in «

so that uI 5 uI0 1 «uI1 1 «2uI2 1 · · · and uB 5 uB0 1 «uB1 1
«2uB2 1 · · ·. As we will see below, the surface boundary condi-
tion «2n­zu⊥ 5 t requires that the leading-order surface BL
correction be of O(«21): uS 5 «21uS21 1 uS0 1 «uS1 1 · · ·. In
what follows, we determine the solutions for each component
up to O(«2), applying matching conditions between them to
satisfy the boundary conditions and transport constraints. In
the last subsection, we briefly outline how the vertical flow may
be determined.

a. Leading-order solution

Starting with the interior equations,

2f
­y I
­z

52
­b
­x

1 «2
­2

­z2
n
­uI
­z

( )
, (B1)

f
­uI
­z

52
­b
­y

1 «2
­2

­z2
n
­y I
­z

( )
, (B2)

we immediately find that, to leading order, the horizontal flow
is in thermal wind balance,

f
­y I0
­z

5
­b
­x

and f
­uI0
­z

52
­b
­y

, (B3)

as shown in (29) in the main text. To ensure that the transport
constraints [(23)] are satisfied at each order, we must keep track
of the vertically integrated transport due to each component of
the flow. The transport due to this leading-order interior flow
can be determined by integrating twice in the vertical and using
integration by parts:

�0

2H
uI0 dz 5 HuI0|2H 1

1
f

�0

2H
z
­b
­y

dz ; UI0, (B4)

�0

2H
y I0 dz 5 Hy I0|2H 2

1
f

�0

2H
z
­b
­x

dz ; VI0, (B5)

where the leading-order interior flow at the top of the BL
uI0|2H is yet to be determined.

To determine the bottom BL correction, we transform (21)
and (22) using the stretched vertical coordinate z 5 (z1H)/«

FIG. A1. Snapshot of (a) cross-slope flow u and (b) along-slope
flow y satisfying the transport-constrained 1D equations [(A8)–
(A10)] for aspect ratios a 5 0 and 1/2 and the same mixing-driven
buoyancy field at t 5 1022 used in the main text. The column depth
H5 0.75 and local slope u 5 p/4 corresponding to the point x5 0.5
and y5 0 on the bowl, as in Fig. 5. In this case, the vertical velocity
profile is the same as the cross-slope flow because w5 u tanu.
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so that ­z " «21­z . The frictional terms are then promoted to
O(1), so, assuming the turbulent viscosity varies over a scale
much larger than the bottom BL, the bottom BL flow satisfies

2f
­yB
­z

5 n |2H

­3uB
­z3

, (B6)

f
­uB
­z

5 n |2H

­3yB
­z3

: (B7)

Note that the buoyancy gradient terms are taken care of in
the interior equations [(B1) and (B2)]. Upon integration in
the vertical (keeping in mind that uB " 0 as z " ‘) and sub-
stitution, (B6) and (B7) can be combined into a single, fourth-
order ODE for uB:

­4uB
­z4

1 4q4BuB 5 0, (B8)

where q21
B 5

�����������
2n |2H/f

√
is the bottom BL thickness in z coordi-

nates. Since there are no factors of « in this equation, it is true
for each order of uB. The leading-order bottom BL correction
is therefore a classic Ekman spiral with coefficients deter-
mined by the bottom boundary condition uI0 52uB0:

uB0 52e2qBz (uI0|2H cosqBz 1 y I0|2H sinqBz), (B9)

yB0 52e2qBz (y I0|2H cosqBz 2 uI0|2H sinqBz), (B10)

corresponding to (30) and (31) in the main text. The vertical
integral of this leading-order bottom BL correction picks up a
factor of « due to the thinness of the layer:

«

�‘

0
uB0 dz 52«

uI0|2H 1 y I0|2H

2qB
; «UB1, (B11)

«

�‘

0
yB0 dz 51«

uI0|2H 2 y I0|2H

2qB
; «VB1: (B12)

If a nonzero buoyancy gradient and/or wind stress is present
at the surface, a BL will form there as well. In the stretched
vertical coordinate ẑ 5 z/«, we again arrive at a fourth-order
ODE for uS,

­4uS
­ẑ4

1 4q4SuS 5 0, (B13)

this time with q21
S 5

��������
2n |0/f

√
. The surface stress boundary con-

dition, split between the interior and BL components, is

«n
­uS
­ẑ

5 tx 2 «2n
­uI
­z

and «n
­yS
­ẑ

5 ty 2 «2n
­y I
­z

(B14)

at z 5 0. As alluded to above, this shows explicitly that a sur-
face BL correction of O(«21) is needed to balance the O(1)
wind stress. This correction must again be of the form

uS21 5 eqSẑ (c1 cosqSẑ 1 c2 sinqSẑ), (B15)

yS21 5 eqSẑ (c1 sinqSẑ 2 c2 cosqSẑ), (B16)

where the coefficients can be determined from the O(1) sur-
face boundary condition [(B14)], which yields

c1 5
tx 1 ty

2n |0qS
and c2 5

tx 2 ty

2n |0qS
: (B17)

The vertical integral of the surface BL correction again picks
up a factor of « due to the thinness of the layer, but this can-
cels with the «21 order of the flow:

�0

2‘
uS21 dẑ 51

ty

f
; US0, (B18)

�0

2‘
yS21 dẑ 5 − ty

f
; VS0, (B19)

so this transport is ultimately of the same order as UI0

(Ekman 1905).
The leading-order solution to the local inversion is now

fully characterized apart from the constants uI0 |2H and
y I0|2H. These can be determined in terms of the barotropic
transport U by combining the contributions from each of
these components. Expanding the transport in « so that
U 5 U0 1 «U1 1 «2U2 1 · · ·, we have the O(1) balance

U0 5 UI0 1 US0, (B20)

with UB1 contributing at the next order. Substituting the re-
sults from (B4), (B5), (B18), and (B19) into (B20) and solving
for the interior velocities at the top of the bottom BL yields

uI0|2H 5
U0

H
2

1
fH

�0

2H
z
­b
­y

dz 2
ty

fH
, (B21)

y I0|2H 5
V0

H
1

1
fH

�0

2H
z
­b
­x

dz 1
tx

fH
, (B22)

as shown in (33) and (34) in the main text. The leading-order
solution is now complete.

Apart from building intuition for the local response, this an-
alytical solution can now also be used to explicitly couple the
local response to the barotropic circulation via the bottom
stress curl. By nature of the large vertical shear in the bot-
tom BL correction, it dominates the bottom stress at lead-
ing order:

«2n
­u

­z

∣∣∣∣
2H

5 «2n
­uI
­z

∣∣∣∣
2H

1 «n
­uB
­z

∣∣∣∣
0
: (B23)

The leading-order bottom stress is therefore of O(«) and, us-
ing uI0|2H from (B21) and (B22), takes the form

«n
­uB0
­z

∣∣∣∣
0
5 «n |2HqB

U0 2 V0

H
2

1
fH

�0

2H
z
­b
­x

1
­b
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( )
dz 2
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fH

[ ]
,

(B24)
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«n
­yB0
­z
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0
5 «n |2HqB

U0 1 V0

H
1

1
fH

�0

2H
z
­b
­x

2
­b
­y
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dz 1

tx 2 ty

fH

[ ]
,

(B25)

corresponding to (35) and (36) in the main text.

b. O(«) solution

In the main text, only the leading-order solution is pre-
sented. While this is sufficient for understanding the salient dy-
namics, it may be necessary to compute the O(«) contributions
to obtain quantitative agreement with the numerical solution.
This was the case for all cases in the main text, where the
leading-order circulation set by thermal wind shear was weak.
In appendix C, we will use this first-order solution to compute
the O(«) contribution to C, as shown in (42) and Fig. 8.

The interior equations [(B1) and (B2)] at O(«) are simply

­y I1
­z

5 0 and
­uI1
­z

5 0; (B26)

implying that uI1 and y I1 are constants in z. The bottom BL
equations [(B6) and (B7)] are the same at O(«), implying the
same form of the second-order BL correction uB1 as in (B9)
and (B10), this time with the coefficients uI0|2H replaced by
uI1. The integral will again pick up a factor of «, yielding the
O(«2) contribution UB2 to the total transport. The surface
boundary condition [(B14)] at O(1) just becomes ­ẑuS0 5 0 at
ẑ 5 0, implying uS0 5 0, while atO(«), we have

n
­uS1
­ẑ

5
n

f
­b
­y

and n
­yS1
­ẑ

52
n

f
­b
­x

(B27)

at ẑ 5 0. If a buoyancy gradient at the surface exists, this will
lead to an O(«) surface BL correction of the same form as in
(B15) and (B16) with coefficients of the same form as in
(B17) with t replaced by –n­zuI0|0. This correction yields an
O(«2) contribution to the vertically integrated transport US2.

We again use the transport constraint to solve for uI1 in
terms of U1. The O(«) transport is determined by the first-
order barotropic interior correction and the integral of the
leading-order bottom BL correction:

U1 5 HuI1 1 UB1: (B28)

Substituting the form of UB1 from (B11) and (B12) and solv-
ing for uI1 yields

uI1 5
U1

H
1

uI0|2H 1 y I0|2H

2HqB
, (B29)

y I1 5
V1

H
2

uI0|2H 2 y I0|2H

2HqB
, (B30)

where uI0|2H can be read off from (B21) and (B22). The
O(«2) bottom stress from (B23) is then

«2n
­uI0
­z

∣∣∣∣
2H

1 «2n
­uB1
­z

∣∣∣∣
0
52«2

n

f
­b
­y
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2H

1 «2n |2HqB(uI1 2 y I1), (B31)
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∣∣∣∣
0
51«2

n

f
­b
­x
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2H

1 «2n |2HqB(uI1 1 y I1): (B32)

c. O(«2) solution

Finally, we here present the results for the O(«2) solution
for completeness, which are not needed to understand the
leading-order physics but are used to compute the solutions
shown in Figs. 5 and 7 for quantitative comparison. The
most important modification comes from the interior equa-
tions [(B1) and (B2)] at O(«2),

2f
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5
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­z2
n
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­z

( )
and f

­uI2
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5
­2

­z2
n
­y I0
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, (B33)

or, after plugging in the leading-order solution [(B3)],
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­y I2
­z

5
­2

­z2
n
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( )
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n
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: (B34)

The second-order correction to the flow can then be directly
determined upon integration:
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, (B35)
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( )∣∣∣∣
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, (B36)

where again uI2|2H and y I2|2H are constants to be determined
by the matching conditions. Integration over the column then
yields a second-order contribution to the barotropic transport:
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(B37)
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(B38)

As at O(«), the O(«2) bottom BL takes on the same form
as (B9) and (B10), now with coefficients uI2|2H and y I2|2H.
This correction only modifies the transport by O(«3). There
is no surface BL correction at O(«2) since the surface bound-
ary condition [(B14)] at this order is simply ­ẑuS2 5 0. As be-
fore, the coefficients for the second-order flow at the top of
the bottom BL can be determined by writing the second-order
transport in terms of its interior and BL contributions, U2 5

UI2 1 UB2 1 US2, which becomes

U2 5 HuI2|2H 2
n

f 2
­b
­x
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2H

2
H
f 2

­

­z
n
­b
­x

( )∣∣∣∣
2H

2
uI1 1 y I1

2qB
,

(B39)
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V2 5 Hy I2|2H 2
n

f 2
­b
­y

∣∣∣∣
2H

2
H
f 2

­

­z
n
­b
­y

( )∣∣∣∣
2H

1
uI1 2 y I1

2qB
,

(B40)

where uI1 and y I1 are determined above. Note that the surface
terms in (B37) and (B38) cancel with those that appear from
the surface BL correction US2.

d. Vertical flow

As described in the main text, the vertical flow can be
determined from the horizontal flow by the frictional vortic-
ity balance [(24)]. In general, this will require knowledge of
how the horizontal flow varies in x and y due to the relative
vorticity z 5 ­xy 2 ­yu term. For the special local responses
shown in Fig. 5, however, a consistent local solution up to
O(«) can be determined. The O(1) and O(«) balances in
the interior for (24) are

by I0 5 f
­wI0

­z
and by I1 5 f

­wI1

­z
: (B41)

Using y I0 and y I1 from the previous sections, these can
then be integrated from z 5 0 to determine wI0 and wI1. The
constants of integration wI0|0 and wI1|0 are the zeroth- and
first-order contributions to the Ekman pumping velocities,
respectively. For the profiles in Fig. 5, these are zero. Due the
z term in (24), computing the bottom BL correction will, in
general, require evaluating gradients in the local solution across
and along the slope. Instead, we make the simplifying assump-
tion that, in the bottom BL, the flow is aligned with the slope:

wB0 52HxuB0 2 HyyB0 and wB1 52HxuB1 2 HyyB2:

(B42)

In general, the matching conditions for w0 and w1 may
not be satisfied with this assumption. For the simple cases
of either along-slope symmetry or U 5 V 5 0, however, the
boundary condition holds.

APPENDIX C

Models for the Local Response to Mixing

The BL theory in appendix B is presented in terms of
general expansions for the transports U and V and fully ne-
glects the terms that arise when the aspect ratio is increased
(appendix A). For the open-contour case, the local model
simply sets U 5 V 5 0, but the local model in the absence
of along-slope variations instead assumes U 5 0 and ­zy |2H 5 0.
We here outline how one can solve for the expansions of V
in the latter case and clarify how the BL theory can be
modified to account for the added diffusion terms used in
the numerical model. The models for the local response
shown in Figs. 5 and 8 use these modifications.

a. Modification for a Þ 0

Following appendix A, for ­yb 5 0 and Hy 5 0 (as is the
case at y 5 0 in the bowl), the frictional thermal wind equations
[(21) and (22)] for an increased aspect ratio is approximately

2f
­y

­z
52

­b
­x

1 G2«2
­2

­z2
n
­u
­z

( )
, (C1)

f
­u
­z

5 G«2
­2

­z2
n
­y

­z

( )
, (C2)

where G 5 11 a2H2
x . This modification does not account for

curvature inH. The BL theory for these equations follows the
same procedure as in appendix B, now with ­yb 5 0 and the
added G terms. The most notable modification is in the BL
equations, which become

2fyB 5 G2n |2H

­2uB
­z2

, (C3)

fuB 5 Gn |2H

­2yB
­z2

, (C4)

at the bottom and similarly for the surface. AtO(1), this leads
to a modified bottom BL correction compared to (B9) and
(B10) of the form

uB0 52e2qBz (uI0|2H cosqBz 1 G21/2y I0|2H sinqBz), (C5)

yB0 52e2qBz (y I0|2H cosqBz 2 G11/2uI0|2H sinqBz), (C6)

where now q21
B 5 G3/4 �����������

2n |2H/f
√

. The BL solutions at other
orders follow the same pattern. Thus, the added terms due to
increasing the aspect ratio lead to a thicker BL by a factor of
G3/4 and a slightly asymmetrical Ekman spiral. The O(1) and
O(«) interior solutions are unchanged, but an extra factor of
G does appear atO(«2) compared to (B34):

f 2
­uI2
­z

5 G
­2

­z2
n
­b
­x

( )
: (C7)

b. Assuming along-slope symmetry

We now turn specifically to the local model in the case of
along-slope symmetry. From (B3), the leading-order interior
cross-slope flow uI0 must be a constant since ­yb 5 0. The
transport constraint U 5 0 then implies that this constant is
zero so that U0 5 HuI0|2H 5 0. Setting the leading-order
along-slope bottom stress from (B25) to zero implies that

V0 52
1
f

�0

2H
z
­b
­x

dz, (C8)

as in (42) in the main text. From (B5), this implies that y I0|2H 5

0 as noted in PC23. Since the leading-order interior flow in both
directions vanishes at the bottom, there is no leading-order BL
correction: uB0 5 0. Consequently, there is no O(«) contribu-
tion to the net transport from the cross-slope BL correction,
and thus (B29) and (B30) imply that uI1 5 0 and y I1 5 V1/H.
We can determine y I1 from setting the second-order along-slope
bottom stress [(B32)] to zero, which yields

V1 52
H
fqB

­b
­x

∣∣∣∣
2H

, (C9)
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as in (42) in the main text. Note that qB is modified for a Þ 0
as described in the previous section. At the next order, we
find that y I2 is a constant from (B36), and U2 5 0 implies that

uI2|2H 5
G

f 2
­

­z
n
­b
­x

( )∣∣∣∣
2H

, (C10)

from (B39), modified for the a Þ 0 case. This yields

uI2 5
G

f 2
­

­z
n
­b
­x

( )
, (C11)

from (C7). As usual, these lead to an O(«2) BL correction
that contributes an O(«3) term to the net transport. Setting
the along-slope bottom stress from this correction to zero
yields

y I2 5 2uI2|2H 52
G

f 2
­

­z
n
­b
­x

( )∣∣∣∣
2H

, (C12)

so that

V2 52
GH
f 2

­

­z
n
­b
­x

( )∣∣∣∣
2H

1
1

2fq2B

­b
­x
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2H

, (C13)

following (B40).
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